
Megamodels on the Catwalk
Keynote at MODELSWARD 2021

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09

Kathleen Booth

Ada Lovelace

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Just to be clear — no dogs today!

Source:

https://www.rose-hulman.edu/class/csse/csse490-mbse/Readings/MDD-Metamodeling.pdf

https://www.rose-hulman.edu/class/csse/csse490-mbse/Readings/MDD-Metamodeling.pdf

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Megamodels are domain-specific models (like most or all models).

What's the domain supported by megamodels?
It depends! It may be, for example, the domain of model transformation or the domain of software technologies.

What is a megamodel anyways?
Roughly, a megamodel is a model whose elements are software artifacts (such as models or programs).

In fact, those artifacts aren't necessarily as concrete as actual models; they could be opaque, as in the case of libraries.

The relationships in a megamodel thus relate software artifacts (with conformance being the obvious example).

Hold on, megamodels also capture knowledge about the domain.

Thus, naturally, model elements and relationships also concern software concepts and software languages.

Megamodels come in many flavors: prescriptive, descriptive, executable, exemplified, renarratable, etc.

Megamodels serve abstraction (like most or all models).

What sort of abstraction do megamodels support?
Megamodels abstract by treating model elements for software artifacts effectively as variables.

Model elements for software concepts and languages are supposedly drawn from an appropriate ontology.

All that matters are the constraints on the model elements expressed by the relationships.

Thus, megamodels are like patterns of conglomerations of related artifacts, concepts, and languages.

Time for a catwalk to organize the space of megamodeling.

Megamodeling is a niche, if you go by explicit mentioning of the paradigm in software engineering.

Megamodeling is omnipresent, if you acknowledge all related hacks and workarounds that are found in the wild.

In this talk, I also hint at where I saw some or where I wanted more megamodeling at Facebook in software development.

Let's discuss how megamodeling could be generalized and used more profoundly in software engineering.

To this end, we need to continue working on these premises:

i) Megamodeling languages are DSLs, subject to designated efforts in analysis, design, and implementation.
ii) Especially analysis involves ontology engineering for concepts, languages, types of artifacts, and relationships.
iii) The most important DSL semantics serves validation of megamodel instances against a megamodel.
iv) The alignment of megamodels and reality requires MSR-style information retrieval and reverse engineering.
v) What's the AST to classical software languages, that's the knowledge graph to megamodeling DSLs.

Outlin
e

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

The term ‘megamodel’ lacks clarity in
definition or demarcation.

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

A megamodel for EMF code generation

Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 3

2 EMF Code Generation

Di↵erent resources exist, where EMF usage is explained. In non-scientific literature,
we find text and loose visual diagrams2 that explain EMF code generation. In MDE
literature, many researchers have summarized code generation using EMF in di↵erent
contexts, such as developer activities [HGG12], adapted EMF processes [EIG+15] and
pluggable analysis [HHL+17]. EMF has served as an exemplary technology several
times in our research [FLV12, HLV17, HHL+17, SLH+17, HHL18].

In this paper, we are concerned with the aspect that, within the context of edu-
cation or for the purpose of useful documentation of a software technology, any tech-
nology model needs to be reproducible so that it can be safely reused and referred
to. Therefore, we develop a methodology for the reproducible construction of tech-
nology models. We execute this methodology specifically to construct a reproducible
technology model on EMF code generation.

The technology model depicted in Figure 1 serves as the running example. It
provides a visual summary of the central artifact types and their relations that are
often covered in non-scientific as well as scientific literature. It relates to five types
of artifacts that are instantiated when using EMF . It summarizes how three di↵er-
ent types of Java code artifacts are derived using an Ecore and generator model. In
megamodeling, such derivations have been modeled as functions and their applica-
tions [HLV17, HHL+17, Zay12, FLV12, LV14b].

Figure 1 – A technology model of EMF code generation.

3 Methodology

We propose an incremental process to construct reproducible technology models.
Technology models consist of technology-specific artifact types and their relations.
In the process, artifact types and relations are added as increments one after another.
For every increment to the model, evidence is needed. Hence, every increment needs
to be aligned with concise textual explanations and idiomatic code examples. By
linking the evidence, the construction process becomes reproducible. Linked textual
explanations and code examples add value to a “meaningless diagram”.

(Query-based) Reduction Steps: Searching for textual explanations and code
examples in a corpus requires manual e↵ort. Figure 2 summarizes the iterative pro-
cedure to systematically reduce a corpus of resources to evidence that is then linked
to the technology model. If evidence is already known from personal experience, it is
linked immediately. As long as evidence is missing, the goal is to reduce the corpus

2See, for example, https://eclipsesource.com/blogs/tutorials/emf-tutorial/

Journal of Object Technology, vol. 19, no. 2, 2020

Source: Marcel Heinz, Johannes Härtel, Ralf Lämmel: Reproducible Construction of Interconnected
Technology Models for EMF Code Generation. J. Object Technol. 19(2): 8:1-25 (2020). See also conference
version: Johannes Härtel, Marcel Heinz, Ralf Lämmel: EMF Patterns of Usage on GitHub. ECMFA 2018: 216-234

http://www.jot.fm/contents/issue_2020_02/article8.html
http://www.jot.fm/contents/issue_2020_02/article8.html

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

A megamodel for compiler bootstrappingA tombstone diagram for
bootstrapping a C compiler8

Mechanics of an
ATL-based model transformation9

ATL Documentations
!

!
ATL Starter’s Guide Date 07/12/2005

Page 2!

MMM

MMt

Ma Mb

MMa

Mt

MMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation

MMMMMM

MMtMMt

MaMa MbMb

MMaMMa

MtMt

MMbMMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation
Figure 1. An overview of model transformation

Figure 1 summarizes the full model transformation process. A model Ma, conforming to a metamodel
MMa, is here transformed into a model Mb that conforms to a metamodel MMb. The transformation is
defined by the model transformation model Mt which itself conforms to a model transformation
metamodel MMt. This last metamodel, along with the MMa and MMb metamodels, has to conform to a
metametamodel (such as MOF or Ecore).

3 A simple transformation example
This section introduces the transformation example that is going to be developed in the document. The
aim of this first example is to introduce users with the basic concepts of the ATL programming. To this
end, this example considers two similar metamodels, Author (Figure 2) and Person (Figure 3), that
both encode data relative to persons.

Figure 2. The Author metamodel

Figure 3. The Person metamodel

Both metamodels are composed of a single eponym element: Author for the Author metamodel and
Person for the Person metamodel. Both entities are characterized by the same couple of string
properties (name and surname).
The objective is here to design an ATL transformation enabling to generate a Person model from an
Author model. The transformation to be designed will have to implement the following (obvious)
semantics:

• A distinct Person element is generated for each source Author element;
o The name of the generated Person has to be initialized with the name of the source

Author;
o The surname of the generated Person has to be initialized with the name of the

source Author.

Fig. 2. Megamodels in di↵erent areas of computer science.

3.2 Entity types of MegaL

We distinguish three kind of entities: abstract entities—they appear at the math-
ematical level of thinking; conceptual entities—they are cognitive elements such
as languages or technologies; digital entities—they correspond to artifacts that
reside in and are processed by computers.

In this paper, we use these types of abstract entities: Entity, Set, Pair, Relation,
Function, FunctionApplication (i.e., pairs pertaining to a function). For instance,
functions are needed to model the meaning of tools or programs. Further, we use
these types of conceptual entities: Language and Technology. Languages can be
viewed (in a simplified manner) as sets. Technologies can be viewed as compound
entities with components for tools, languages, and others. Finally, we use these
types of digital entities: Artifact (the base type for the following types), File,
Fragment (of a file), Program, Library, ObjectGraph.

The aforementioned entity types are just su�cient for the examples in this
paper. The megamodel ontology can be extended to cover di↵erent domains,
technological spaces, or engineering activities [8]. For instance, a megamodel in
the context of model-driven engineering may benefit in clarity from additional
digital entity types for models, metamodels, and model transformations.

3.3 Relationship types of MegaL

Based on the fundamental relationships and the types of entities, as identified
above, the following relationship types can be derived. Again, the list is trimmed
down for the scope of this paper. We apply a UML-like convention to use ‘:Type’
for a concrete (anonymous) entity of the given type.

⇧ :Language subsetOf :Language
⇧ :Artifact elementOf :Language
⇧ :Language domainOf :Function
⇧ :Function hasRange :Language
⇧ :FunctionApplication elementOf :Function

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

A megamodel for parsing in a broad sense

Source: Vadim Zaytsev,
A n y a H e l e n e B a g g e :
Parsing in a Broad Sense.
MoDELS 2014: 50-67

https://dblp.org/pid/31/3092.html
https://doi.org/10.1007/978-3-319-11653-2_4
https://dblp.org/db/conf/models/models2014.html#ZaytsevB14

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

A
megamodel
for ANTLR

usage

Source: Ralf Lämmel, Andrei
Varanovich: Interpretation of
Linguistic Architecture. ECMFA
2014: 67-82

http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf
http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf
http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

A megamodel for MT with ATL/Acceleo

Source: Juri Di Rocco, Davide Di Ruscio, Johannes
Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso
Pierantonio: Understanding MDE projects:
megamodels to the rescue for architecture
recovery. Softw. Syst. Model. 19(2): 401-423 (2020).
See also conference version: Juri Di Rocco, Davide Di
Ruscio, Johannes Härtel, Ludovico Iovino, Ralf
Lämmel, Alfonso Pierantonio: Systematic Recovery of
MDE Technology Usage. ICMT 2018: 110-126

https://link.springer.com/article/10.1007/s10270-019-00748-7
https://link.springer.com/article/10.1007/s10270-019-00748-7
https://link.springer.com/article/10.1007/s10270-019-00748-7

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Megamodels for two basic BX patterns

Source: Ralf Lämmel: Coupled software transformations revisited. SLE 2016: 239-252

s1 : L1 v1 : L2

get

put

s2 : L1 v2 : L2

s1 : L1 v1 : L2

get

propagate �

s2 : L1 v2 : L2

State-based lenses Delta-based lenses

�

In the first (more basic) BX pattern, get maps a source to a view;
put maps back a changed view to a source while taking into account
the original source so that BX can go beyond bijective functions. In
the second (more detailed) BX pattern, put has been replaced by a
decomposition of differencing and change propagation.

Figure 2. Two basic BX patterns

The kind of models that we seek are megamodels [5,
7, 8, 35] as pioneered in the technological space ‘mod-
elware’ or model-driven engineering (MDE). Megamodels
have been proposed to manage repositories of models, meta-
models, model transformations, and model-based software,
e.g., in the sense of models@runtime. Megamodeling is an
active research area with challenges related to the formal un-
derpinnings, the generality in terms of application domains
and technological spaces, and the validation of the models.
[19, 23, 39].

Contributions of the paper

• A suite of megamodels for CX/BX patterns. In this man-
ner, non-trivial forms of software transformations are
modeled. The paper includes patterns for CX/BX forms
such as mapping, co-transformation, and lenses.

• A predicate logic-based megamodeling approach with-
out commitment to a specific technological space. To this
end, an emerging language LAL (‘Linguistic Architec-
ture Language’) is described including its executable lan-
guage definition.

• A translation semantics for megamodels suitable for test-
ing software transformations. In this manner, the CX
megamodels are shown to abstract in a useful manner. For
instance, universally quantified properties are mapped to
executable test cases for actual CX implementations on
actual artifacts.

Roadmap of the paper Sec. 2 provides background on the
notion of CX by surveying research on CX and specifically
pointing out different application domains and scenarios.
Sec. 3 introduces LAL in a nutshell by capturing basics
of software transformation. Sec. 4 develops megamodels for
patterns of CX. Sec. 5 describes the translation of megamod-
els into test cases. Sec. 6 provides the language definition of
LAL. Sec. 7 discusses related work. Sec. 8 concludes the
paper.

The megamodels of this paper and the implementation of
LAL are available online.1

2. Background on CX

We survey the literature on CX to discover application do-
mains and scenarios of CX, thereby also motivating the more
abstract CX/BX patterns of Fig. 1–Fig. 2. As a matter of
scoping this survey, we specifically look at papers that are
concerned with CX explicitly. In fact, we considered papers
that cited the original CX paper [36]2 and follow-up papers
in a few cases.

In a metamodeling context, there is the important prob-
lem of model/metamodel co-evolution [30, 54]; this is an in-
stance of ‘Co-transformation’ as of Fig. 1. In the context of
relational databases or XML, there is the very similar prob-
lem of instance/schema coevolution [6, 28].

In generalization of instance/schema co-evolution, pro-
grams (queries, transformations) may also be involved in
co-evolution [13, 14, 29]. Likewise, there are situations of
a network of artifacts at the same or different levels of ab-
straction; see, for example, the co-evolution of GMF editor
models [46] or multi-language refactoring [48].

In a parsing context, there is the important problem of
concrete versus abstract syntax adaptation [40, 51]. When,
for example, the concrete syntax is transformed such that
the generated language is not affected, then this is an in-
stance of ‘Consistency as invariant’ as of Fig. 1. Other forms
of CX have been studied in the broader context of syn-
tax or language definition: the coevolution of metamodels
and model-to-text transformations [45] and change tracking
for DSL programs based on semantically meaningful source
code deltas [50].

In a code generation context, as relevant in the areas
of domain-specific languages and model-driven engineer-
ing, there is the important problem of code customiza-
tion [41, 59], i.e., as to how to preserve changes to gen-
erated code when re-generating the code. In this case, ‘Co-
transformation with delta’ as of Fig. 1 may be applicable.

In a technological space traveling context, in the general-
ized sense of de-/serialization, there is the important problem
of mapping data models from one space to the other as well
as instances across these spaces, back and forth; see [37, 38]
for a general discussion on Object/Relational/XML map-
ping; this problem involves ‘Mapping’ as of Fig. 1.

The large body of research on BX is mentioned here by
means of these proxies: bidirectionalization of transforma-
tions on trees and graphs [31, 42], model synchronization in
the sense of BX and lenses [17]. In Fig. 2, we sketch two
patterns for BX with lenses, state-based versus delta-based
lenses [18], which differ in whether change discovery and

1https://github.com/softlang/yas/tree/sle16
2https://scholar.google.com/scholar?cluster=

7317986457099942654

http://softlang.uni-koblenz.de/cxrevisited/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Megamodels for two basic BX patterns

Source: Ralf Lämmel: Coupled software transformations revisited. SLE 2016: 239-252

can be used to change c to a compatible d. The pattern ‘Co-
transformation with delta’ is useful in code generation when
changes to generated code are to be preserved along regen-
eration.

4.5 The ‘State-based Lenses’ Pattern

Basic lenses enhance the ‘Mapping’ pattern; see the substi-
tution of mapping by what is called get in the case of lenses.
There is put for the opposite direction, which we mark here
as being possibly partial. In the terminology of lenses, L1 is
the language of the source and L2 is the language of the view.

LAL megamodel bx.state

reuse cx.mapping [mapping 7! get]

function get : L1 ! L2
function put : L1 ⇥ L2 7! L1
axiom GetPut { 8 s 2 L1.

put(s, get(s)) = s }

axiom PutGet { 8 s1, s2 2 L1. 8 v 2 L2.
put(s1, v) = s2) get(s2) = v }

The axioms GetPut and PutGet are the most basic ones
in the theory on lenses. The specific formulation of PutGet
accounts for partiality of put: we do not assume that all
conceivable changes of the view can be put back.

4.6 The ‘Delta-based Lenses’ Pattern

The following axiomatization imposes more structure on
state-based lenses to arrive at the delta-based form. Differ-
ences on views as well as their propagation on sources are
taken into account.

LAL megamodel bx.delta

reuse bx.state

reuse differencing [L 7! L2, Any 7! Any2]

function propagate : L1 ⇥ DiffL 7! L1
axiom { 8 s1, s2 2 L1. 8 v1, v2 2 L2. 8 delta 2 DiffL.

get(s1) = v1
^ diff(v1, v2) = delta

^ propagate(s1, delta) = s2)
put(s1, v2) = s2 ^ get(s2) = v2 }

The axiom models that put can be regarded as a composi-
tion of diffing and diff propagation. The overall idea of delta-
based lenses is indeed that they decompose change propaga-
tion into parts that may be controlled and reused indepen-
dently. We could even carry on and decompose propagation
into diff transformation and normal diff application with ap-

plyDiff.

5. Translation of Megamodels

Megamodels reside at a high level of abstraction, giving rise
to the overall problem of megamodel ‘adequacy’. That is,
how to gain confidence about a megamodel’s correctness
or appropriateness or usefulness? The language processing
model of LAL with its translation semantics to test cases
addresses the adequacy problem in a particular manner.

ParsingMega-
model
(LAL)

Unparsing

Inlining modulo
substitution

Well-fo
rmedness

checking

ProblemsAST
(LAL)

AST
(LAL)

Config-
uration

Test
cases

(Ueber)
Translation

Software
Language
Repository

(YAS)

Test execution

Figure 3. Megamodel processing for LAL.

5.1 Megamodel Processing for LAL

The various aspects of processing LAL’s megamodels are
shown in Fig. 3. LAL’s concrete syntax is parsed into an
abstract syntax. Inlining modulo substitution is applied then.
Well-formedness checking is applied to megamodels af-
ter such inlining. Well-formedness checking is concerned
with the integrity of the megamodel such that all referenced
names are declared and yet other conditions which are com-
parable to a programming language’s type system or static
semantics. There is also an unparser so that the result of in-
lining can be inspected by the user, which may help with
understanding. A translation is applied to the megamodel
to derive test cases (descriptions thereof) so that available
interpretations of languages, relations, and functions can be
tested in terms of the formulae in the megamodels.

Megamodel-based testing is applied to artifacts available
in YAS—Yet Another SLR (Software Language Reposi-
tory)3. That is, YAS is a collection of executable language
definitions and language processing components includ-
ing software transformations. Megamodel-based testing is
specifically applied to the logic programming-based slice of
YAS. The derived test cases are represented in a lower level
megamodeling notation, UEBER, which serves for build
management and regression testing in YAS.

5.2 An illustrative CX

We set up an illustrative CX; it is concerned with ter-
m/signature co-evolution. YAS supports a ‘Basic Signature
Language’ (BSL) inspired by algebraic signatures. Binary
trees with Peano-like natural numbers (zero, succ(zero),
succ(succ(zero)), . . .) at the leafs are modeled by the fol-
lowing signature:

Signature languages/BSTL/tests/sig1.bsl
symbol leaf : nat ! tree ; // leaf in a tree
symbol fork : tree ⇥ tree ! tree ; // binary fork in a tree

3http://www.softlang.org/yas

can be used to change c to a compatible d. The pattern ‘Co-
transformation with delta’ is useful in code generation when
changes to generated code are to be preserved along regen-
eration.

4.5 The ‘State-based Lenses’ Pattern

Basic lenses enhance the ‘Mapping’ pattern; see the substi-
tution of mapping by what is called get in the case of lenses.
There is put for the opposite direction, which we mark here
as being possibly partial. In the terminology of lenses, L1 is
the language of the source and L2 is the language of the view.

LAL megamodel bx.state

reuse cx.mapping [mapping 7! get]

function get : L1 ! L2
function put : L1 ⇥ L2 7! L1
axiom GetPut { 8 s 2 L1.

put(s, get(s)) = s }

axiom PutGet { 8 s1, s2 2 L1. 8 v 2 L2.
put(s1, v) = s2) get(s2) = v }

The axioms GetPut and PutGet are the most basic ones
in the theory on lenses. The specific formulation of PutGet
accounts for partiality of put: we do not assume that all
conceivable changes of the view can be put back.

4.6 The ‘Delta-based Lenses’ Pattern

The following axiomatization imposes more structure on
state-based lenses to arrive at the delta-based form. Differ-
ences on views as well as their propagation on sources are
taken into account.

LAL megamodel bx.delta

reuse bx.state

reuse differencing [L 7! L2, Any 7! Any2]

function propagate : L1 ⇥ DiffL 7! L1
axiom { 8 s1, s2 2 L1. 8 v1, v2 2 L2. 8 delta 2 DiffL.

get(s1) = v1
^ diff(v1, v2) = delta

^ propagate(s1, delta) = s2)
put(s1, v2) = s2 ^ get(s2) = v2 }

The axiom models that put can be regarded as a composi-
tion of diffing and diff propagation. The overall idea of delta-
based lenses is indeed that they decompose change propaga-
tion into parts that may be controlled and reused indepen-
dently. We could even carry on and decompose propagation
into diff transformation and normal diff application with ap-

plyDiff.

5. Translation of Megamodels

Megamodels reside at a high level of abstraction, giving rise
to the overall problem of megamodel ‘adequacy’. That is,
how to gain confidence about a megamodel’s correctness
or appropriateness or usefulness? The language processing
model of LAL with its translation semantics to test cases
addresses the adequacy problem in a particular manner.

ParsingMega-
model
(LAL)

Unparsing

Inlining modulo
substitution

Well-fo
rmedness

checking

ProblemsAST
(LAL)

AST
(LAL)

Config-
uration

Test
cases

(Ueber)
Translation

Software
Language
Repository

(YAS)

Test execution

Figure 3. Megamodel processing for LAL.

5.1 Megamodel Processing for LAL

The various aspects of processing LAL’s megamodels are
shown in Fig. 3. LAL’s concrete syntax is parsed into an
abstract syntax. Inlining modulo substitution is applied then.
Well-formedness checking is applied to megamodels af-
ter such inlining. Well-formedness checking is concerned
with the integrity of the megamodel such that all referenced
names are declared and yet other conditions which are com-
parable to a programming language’s type system or static
semantics. There is also an unparser so that the result of in-
lining can be inspected by the user, which may help with
understanding. A translation is applied to the megamodel
to derive test cases (descriptions thereof) so that available
interpretations of languages, relations, and functions can be
tested in terms of the formulae in the megamodels.

Megamodel-based testing is applied to artifacts available
in YAS—Yet Another SLR (Software Language Reposi-
tory)3. That is, YAS is a collection of executable language
definitions and language processing components includ-
ing software transformations. Megamodel-based testing is
specifically applied to the logic programming-based slice of
YAS. The derived test cases are represented in a lower level
megamodeling notation, UEBER, which serves for build
management and regression testing in YAS.

5.2 An illustrative CX

We set up an illustrative CX; it is concerned with ter-
m/signature co-evolution. YAS supports a ‘Basic Signature
Language’ (BSL) inspired by algebraic signatures. Binary
trees with Peano-like natural numbers (zero, succ(zero),
succ(succ(zero)), . . .) at the leafs are modeled by the fol-
lowing signature:

Signature languages/BSTL/tests/sig1.bsl
symbol leaf : nat ! tree ; // leaf in a tree
symbol fork : tree ⇥ tree ! tree ; // binary fork in a tree

3http://www.softlang.org/yas

http://softlang.uni-koblenz.de/cxrevisited/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

A megamodel for a self-adaptive software system
(Models@Runtime)

Source: https://arxiv.org/abs/1805.07396

https://arxiv.org/abs/1805.07396

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

• What are model elements (nodes)?

• What are relationships (edges)?

• What’s the technical space, if not modelware?

• Is the model an abstraction?

• How to instantiate the model?

• How to validate the model?

• Does the model run?

• Is the model part of the system?

• …

A lot of diversity!

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

How do we use those megamodels?

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

How do we use

models of linguistic architecture?

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Linguistic architecture of XML-data binding in Java

Source: Ralf Lämmel, Vadim Zaytsev: Language Support for Megamodel Renarration. XM@MoDELS 2013: 36-45

http://ceur-ws.org/Vol-1089/5.pdf

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

… XML-data binding in C#

154 J.-M. Favre, R. Lämmel, and A. Varanovich

The upper frame uses the MegaL/yEd visual notation for megamodeling.

The lower frame shows linked artifacts of the product explained later in the paper.

Fig. 1. The linguistic architecture of a software product when displayed with the Me-
gaL/Explorer tool

(see CompanyXSD2CS.bat), which essentially invokes the .NET tool xsd.exe
(see dependsOn). Ultimately, the operation for cutting companies is invoked by
demo functionality (see Demo.cs) and applied to a specific company—the Acme
Corporation.5

5 http://en.wikipedia.org/wiki/Acme_Corporation

Source: Jean-Marie Favre, Ralf Lämmel, Andrei Varanovich: Modeling the
Linguistic Architecture of Software Products. MoDELS 2012: 151-167

https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11
https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

… XML-data
binding in C#

Source: Jean-Marie Favre, Ralf Lämmel,
Andrei Varanovich: Modeling the

Linguistic Architecture of Software
Products. MoDELS 2012: 151-167

https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11
https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11
https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

�ȩǕŏȘȘƚɯ mşɟɾƚȀࡈ �ʕǺŏɯ mşɟɾƚȀࡈ �ŏɟżƚȀ mƚǞȘˌࡈ áŏȀǀ �şȒȒƚȀࡈ ŏȘƇ �ȘƇɟƚǞ ģŏɟŏȘȩʲǞżǕ

TQFDJƐD NPEFMJOH MBOHVBHF 	XJUI MJOHVJTUJD BSDIJUFDUVSF PS UFDIOPMPHZ EPDVNFOUBUJPO
BT EPNBJO
 BOE B LOPXMFEHF SFQSFTFOUBUJPO MBOHVBHF�

áƚɯƚŏɟżǕ ȩųǲƚżɾǞʲƚࡇȑŏǹǝȗǂȑƙǂŏȑȧƆƙǿɫȑȧɛƙ ʑɫƙƿʑǿ .PEFMT PG MJOHVJTUJD BSDIJUFDUVSF

JO PSEFS UP CF VTFGVM BT EPDVNFOUBUJPO
 TIPVME QSPQFSMZ IFMQ EFWFMPQFST UP CFUUFS
VOEFSTUBOE IPX UP VTF UFDIOPMPHJFT JO OFX TZTUFNT 	QSFTDSJQUJWF NPEF
 PS IPX
UFDIOPMPHJFT BSF VTFE JO FYJTUJOH TZTUFNT 	EFTDSJQUJWF NPEF
� .FHBNPEFMT
 JO HFOFSBM
BOE
 JO UIF DBTF PG NPEFMT PG MJOHVJTUJD BSDIJUFDUVSF
 JO QBSUJDVMBS
 SFTJEF BU B IJHI MFWFM
PG BCTUSBDUJPO� 5IVT
 UIF LFZ RVFTUJPO JT UIJT�)PX UP NBLF NFHBNPEFMT VTFGVM FOPVHI
GPS DSFBUJOH PS VOEFSTUBOEJOH TZTUFNT
 BT GBS BT UFDIOPMPHZ VTBHF JT DPODFSOFE "
TVCPSEJOBUFE RVFTUJPO JT UIJT�)PX UP FYBDUMZ QFSGPSN NFHBNPEFMJOH $POTJEFS 'JH Ɔ
GPS QSFQBSJOH GPS B EFFQFS EJTDVTTJPO PG UIF VTF PG MJOHVJTUJD BSDIJUFDUVSF JO TPGUXBSF
EFWFMPQNFOU�

Mega-
model System

Prescriptive mode

Descriptive mode

FE RE

Well-formedness
Verification

Abstraction

Instantiation

Alignment

_Ǟǃʕɟƚ ߨ -JOHVJTUJD BSDIJUFDUVSF JO GPSXBSE BOE SFWFSTF FOHJOFFSJOH 	'& � 3&
�

*O UIF DBTF PG GPSXBSE FOHJOFFSJOH 	'&

 XF TUBSU GSPN B NFHBNPEFM GPS TDFOBSJPT PG
UFDIOPMPHZ VTBHF XIJDI XF JOTUBOUJBUF 	NBOVBMMZ PS TFNJ�BVUPNBUJDBMMZ
 UP EFSJWF
UIF SFMFWBOU QBSUT PG UIF TZTUFN� UIJT JT UIF QSFTDSJQUJWF NPEF PG NFHBNPEFMJOH� *O
UIF DBTF PG SFWFSTF FOHJOFFSJOH 	3&

 XF TUBSU GSPN B TZTUFN GSPN XIJDI XF BCTUSBDU
	NBOVBMMZ PS TFNJ�BVUPNBUJDBMMZ
 UP EFSJWF B NFHBNPEFM� UIJT JT UIF EFTDSJQUJWF NPEF
PG NFHBNPEFMJOH� *O GBDU
 CPUI NPEFM BOE TZTUFN NBZ 	QBSUJBMMZ
 DP�FYJTU SJHIU GSPN
UIF TUBSU BOE UIVT
 UIFZ OFFE UP CF BMJHOFE 	NBOVBMMZ PS TFNJ�BVUPNBUJDBMMZ
� *O
BMM DBTFT
 UIF NFHBNPEFM
 KVTU CZ JUTFMG
 NVTU CF XFMM�GPSNFE
 J�F�
 JU TIPVME NBLF
DPSSFDU VTF PG UIF NFHBNPEFMJOH WPDBCVMBSZ� .PSF JNQPSUBOUMZ
 NPEFM BOE TZTUFN
TIPVME CF DPOTJTUFOU XJUI FBDI PUIFS
 J�F�
 NPEFM FMFNFOUT TIPVME CF MJOLFE UP TVJUBCMF
TZTUFN BSUJGBDUT BOE SFMBUJPOTIJQT PO NPEFM FMFNFOUT TIPVME TPNFIPX DPSSFTQPOE
UP BDUVBM QSPQFSUJFT JO UIF TZTUFN� 5P UIJT FOE
 XF BTTVNF B GPSN PG WFSJƑDBUJPO� *O
UIF EFTDSJQUJWF NPEF
 TVDDFTTGVM WFSJƐDBUJPO XPVME NFBO UIBU UIF EFSJWFE NPEFM JT
B DPSSFDU BCTUSBDUJPO PG UIF TZTUFN� *O UIF QSFTDSJQUJWF NPEF
 TVDDFTTGVM WFSJƐDBUJPO

ߩࡷߩ

Linguistic architecture in a software development context

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

vȘɾƚɟżȩȘȘƚżɾƚƇ �ǞȘǃʕǞɯɾǞż �ɟżǕǞɾƚżɾʕɟƚ

_Ǟǃʕɟƚ ߭ " NFTTBHF GFE CBDL CZ UIF BOBMZTJT GPS ĭ�� NFNCFSTIJQ�

ZTJT QSPWJEFT NFTTBHFT BOE FSSPS GFFECBDL UP VTFST
 UIVT BJEJOH UIFN JO BVUIPSJOH
NFHBNPEFMT 	BOE JOTUBOUJBUJOH UIFN PS EFSJWJOH UIFN CZ BCTUSBDUJPO
�

1MVHJOT BSF QSFGFSSFE PWFS PUIFS FYUFOTJPO NFDIBOJTNT
 F�H�
 GPSFJHO MBOHVBHF
JOUFSGBDF WFSTVT MBOHVBHF FNCFEEJOH� "O FYBNQMF PG UIF GPSNFS JT �÷� <ƅƊ> XIFSF
NPEFM USBOTGPSNBUJPOT DBO BQQMZ IFMQFST UIBU BSF FYUFSOBMMZ EFDMBSFE JO �ŏʲŏ DMBTTFT�
"O FYBNQMF PG UIF MBUUFS JT 9CBTF <ƍ> XJUI JUT MBOHVBHF JOIFSJUBODF GPS BEEJOH HFOFSBM�
QVSQPTF MBOHVBHF�MJLF DPOTUSVDUT UP B OFXMZ NPEFMFE %4-� 8F BEWPDBUF JOUFHSBUJPO
UISPVHI QMVHJOT CFDBVTF PG UIF JNQPSUBODF PG SFVTF� 5IF BTQFDUT Ē"SUJGBDU CJOEJOHē BOE
Ē.PEFM JOGFSFODFē BMTP SFMZ PO B QMVHJO JOGSBTUSVDUVSF�

áƚŏȀǞˌŏɾǞȩȘ �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C BTTPDJBUFT QMVHJOT GPS BOBMZTFT XJUI SFMBUJPOTIJQ UZQFT�
�ƚǃŏࡕ�ĭɾƚʾɾࣱv4C BOE QMVHJOT TIBSF B DMBTTQBUI� �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C VTFT CJOEJOHT UP
SFTPMWF B �ģ� FYFDVUBCMF DMBTT ƐMF JO UIF BQQSPQSJBUF DMBTTQBUI� 5IJT NFUIPE
 DPNCJOFE
XJUI UIF JODSFNFOUBM �ŏʲŏ DPNQJMFS QSPWJEFE CZ CżȀǞɔɯƚ
 BMMPXT ƑFYJCMF NPEJƐDBUJPO PG
BOBMZTJT CFIBWJPS BT OFFEFE�

'PS B HJWFO SFMBUJPOTIJQ
 FBDI BTTPDJBUFE QMVHJO JT JOWPLFE UP DIFDL BQQMJDBCJMJUZ�
7FSJƐDBUJPO PG UIF NFHBNPEFM BHBJOTU UIF TZTUFN JT DPOTJEFSFE JODPNQMFUF
 TVCKFDU UP
BQQSPQSJBUF XBSOJOHT
 JG OP QMVHJO JT BQQMJDBCMF UP B SFMBUJPOTIJQ� 5IF BOBMZTJT PG FBDI
BQQMJDBCMF QMVHJO JT FYFDVUFE BOE NFTTBHFT BSF EJTQMBZFE JO UIF FEJUPS
 BT TIPXO JO
'JH� Ƌ� "CTFODF PG BQQMJDBCMF QMVHJOT JT BMTP QSFTFOUFE JO UIF FEJUPS�

'PS JOTUBODF
 DPOGPSNBODF JO UIF ĭ�� TUPSZ SFMJFT PO B QMVHJO MJLF UIJT�

żȀŏɯɯ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ƚʾɾƚȘƇɯ �ƚǃŏ�CʲŏȀʕŏɾȩɟ ࡝
ࡶࡶ ßƝʂʗɥȠɵ ŒȠ ƝʴŒȈʗŒʂǦȰȠ ɥƝɛȰɥʂ ȰȠ ʂǛƝ ȚȰƊƝȈ ƝȈƝȚƝȠʂ
ɔɟȩɾƚżɾƚƇ áƚɔȩɟɾࣨģȩǞƇࣤ ƚʲŏȀʕŏɾƚ࡫áƚȀŏɾǞȩȘɯǕǞɔ ƚȀƚȒƚȘɾ࡬ ࡝
ࡶࡶ ĂɵƝ è�ĩ ǅȰɥ ʴŒȈǦƊŒʂǦȰȠࡵ ʂɥŒȠɵȈŒʂƝ ƝˀƀƝɛʂǦȰȠɵ ʂȰ ɥƝɛȰɥʂ
ࡏࡏࡏ

࡞
࡞

�ƚǃŏࡕ�ĭɾƚʾɾࣱv4CēT QMVHJO JOGSBTUSVDUVSF JT QBSUJBMMZ SFƑFDUJWF� DPOTJEFS UIJT�

ߧ żȩȘǀȩɟȒɯ÷ȩ ࣨ �ɟɾǞǀŏżɾ ࡁ �ɟɾǞǀŏżɾ ࡶࡶ ßƝȈŒʂǦȰȠɵǛǦɛ ʂˁɛƝ ɛƝɥ ɛɥƝȈʗƊƝ
ߨ +ȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ ࡇ ÚȀʕǃǞȘ ࡶࡶ ßȰȰʂ ɛȈʗǈǦȠ ǅȰɥ ƀȰȠǅȰɥȚŒȠƀƝ
ߩ +ȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ ࣣ ࢆȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ+ࡇżȀŏɯɯɔŏɾǕࢆ
ߪ żȩȘǀȩɟȒɯ÷ȩ ƚʲŏȀʕŏɾƚƇ$ʿ +ȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ
߫ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ࡇ ÚȀʕǃǞȘ ࡶࡶ ĩࡶ��ĩè3 ƀȰȠǅȰɥȚŒȠƀƝ
߬ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ࣣ ࢆĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4ࡇżȀŏɯɯɔŏɾǕࢆ
߭ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ɔŏɟɾ°ǀ +ȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ
߮ ë�ĭ ࡇ ÷ƚżǕȘȩȀȩǃʿ ࡶࡶ èƝȚŒȠʂǦƀ ŒȠȠȰʂŒʂǦȰȠ Ȱǅ ɛȈʗǈǦȠ
߯ ë�ĭ ࣣ ëǞȒɔȀƚ࡙�Úv࡙ǀȩɟ࡙ࡕɔŏǃƚࡕȩɟǃࡏƇųɔƚƇǞŏࡕࡕࡇǕɾɾɔ࢈ ĭ࢈��
ߦߧ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ʕɯƚɯ ë�ĭ

ߪߧࡷߩ

Validation of models of linguistic architecture

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Interpretation of models of linguistic architecture

Source: Ralf Lämmel, Andrei Varanovich: Interpretation of Linguistic Architecture. ECMFA 2014: 67-82

http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Processing models of linguistic architecture

Source: Ralf Lämmel, Andrei Varanovich: Interpretation of Linguistic Architecture. ECMFA 2014: 67-82

http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

How do we build those megamodels?

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Discovery of entities and relationships

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Source: Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Understanding MDE projects:
megamodels to the rescue for architecture recovery. Softw. Syst. Model. 19(2): 401-423 (2020). See also conference version: Juri Di Rocco, Davide
Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Systematic Recovery of MDE Technology Usage. ICMT 2018: 110-126

Recovered megamodel of an MDE project

https://link.springer.com/article/10.1007/s10270-019-00748-7
https://link.springer.com/article/10.1007/s10270-019-00748-7

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

408 J. Di Rocco et al.

Fig. 3 Artifacts in a MDE
project

In the case of ATL-based model transformation, artifacts
of interest are clearly the ATL transformations themselves,
but also source and target models for transformations as well
as metamodels for conformance. Artifacts with traces are
those (available) artifacts (of interest or not) in which we
may locate traces to artifacts (mainly references). Subject to
a classification of the artifacts with traces, these artifacts may
be interpreted as (encoding) relationships between artifacts.

Finally, the recovery approach may also involve virtual
artifacts; by this we mean that these artifacts are not really
thought to be part of the repository (available or not), but
they are computed, much in the sense of transient artifacts,
but only for the purpose of discovering artifact types and
relationships.

The overall assumption is that wemay identify artifacts of
interest by examining algorithmically available artifacts and
we may identify relationships between artifacts by examin-
ing, again, algorithmically available artifacts on the grounds
of technology-specific patterns for traces; we may introduce
(in rare cases) virtual artifacts along the way.

4.2 Relationships to be recovered

Figure 4 identifies ‘abstract’ artifacts of interest with rela-
tionships for the running example of ATL and Acceleo. In
particular, in Fig. 4a there are source and target models, the
corresponding metamodels (MMs), the actual ATL model
transformation (MT), and the application thereof. In Fig. 4b,
the sourcemodel is the input, conforming to the sourcemeta-
model, and the Acceleo module (M2T) is executed to get the
output, which can be any textual format file or code, depend-
ing on the target platform. An Acceleo module is usually
called by a corresponding main Java file containing refer-
ences to the module specification.

Source
model

Target
model

Source
MM

Target
MM

conformsTo conformsTo

MT
application

ATL
MT

applies

input output

(a) ATL

Source
model

Source
MM

conformsTo

M2T
application

Acceleo
MTL

applies

input
output

Java
Main

Called by

(b) Acceleo

Fig. 4 ‘Abstract’ artifacts and relationships for ATL versus Acceleo
usage

We also show relationships between these artifacts that
need to be recovered. Relationships between artifacts, e.g.,
conformance and transformation application in the example,
can be identified in different ways:

4.2.1 Trace-based identification

Based on the type of referring artifact (e.g., an ANT file),
based also on the details of reference (e.g., the argument posi-

123

Source: Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Understanding MDE projects:
megamodels to the rescue for architecture recovery. Softw. Syst. Model. 19(2): 401-423 (2020). See also conference version: Juri Di Rocco, Davide
Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Systematic Recovery of MDE Technology Usage. ICMT 2018: 110-126

Heuristics-based architecture recovery

https://link.springer.com/article/10.1007/s10270-019-00748-7
https://link.springer.com/article/10.1007/s10270-019-00748-7

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

#Nodes
#Dangling

Source: Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Understanding MDE projects:
megamodels to the rescue for architecture recovery. Softw. Syst. Model. 19(2): 401-423 (2020). See also conference version: Juri Di Rocco, Davide
Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Systematic Recovery of MDE Technology Usage. ICMT 2018: 110-126

Heuristics-based architecture recovery

https://link.springer.com/article/10.1007/s10270-019-00748-7
https://link.springer.com/article/10.1007/s10270-019-00748-7

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Source: Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Understanding MDE projects:
megamodels to the rescue for architecture recovery. Softw. Syst. Model. 19(2): 401-423 (2020). See also conference version: Juri Di Rocco, Davide
Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Systematic Recovery of MDE Technology Usage. ICMT 2018: 110-126

Heuristics-based architecture recovery

https://link.springer.com/article/10.1007/s10270-019-00748-7
https://link.springer.com/article/10.1007/s10270-019-00748-7

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Query-based construction of linked technology models

4 · Marcel Heinz et al.

by executing several manual as well as automated steps. At first, a promising corpus
that contains evidence needs to be selected. Then, a query is developed. Queries are
formulated and executed to reduce the search scope within a selected corpus. Here,
a query is any tool-based reduction of the corpus to candidates for linked evidence,
for example, by searching for an artifact type’s name using grep. Queries can be for-
mulated based on pattern identified in previously linked evidence and returned query
results. The query results are then manually inspected to confirm concise textual
explanations and idiomatic code examples and link them as evidence. The detection
of evidence is a continuous process. Textual explanations can be helpful to identify
code examples and vice versa. Hence, we do not intend to enforce any order in which
the di↵erent corpora are processed. They can be processed in an interleaving manner.

Figure 2 – Manually (‘M’) or automatically (‘A’) executed steps reduce a corpus to linked
evidence. Resources are related to steps by input and output edges, whose color hints
at whether it is unknown (black), query-related (gray), or linked (white).

The degree of manual e↵ort for executing the methodology depends on the given
experience. If concise textual explanations and idiomatic code examples can be linked
without any querying e↵ort, the e↵ort is at the minimum. If no query can be formu-
lated from the beginning, the e↵ort is at the maximum. Not every resource that can
serve as evidence for an increment may be returned by a developed query, especially,
within a restricted time window; and not every query result can serve as evidence.
We focus on what is in between: Concise textual explanations and idiomatic code
examples that are selected from systematically refined query results and then linked.
To assure the reproducibility of evidence, queries are shared as well. In the example-
driven evaluation, we emphasize reproducibility by providing reduction step protocols
in which we record input and output of each executed reduction step. This way, a
reduction step protocol instantiates the reduction procedure from Figure 2.

When the construction of a technology model is based on an unvaried or non-
representative corpus of resources, it is prone to errors, in particular, misconception
(See Section 4.2). Linking evidence helps in raising the confidence in an intercon-
nected technology model. By developing queries varied and representative evidence
can be linked. Sharing the queries makes the recovery of evidence reproducible and
facilitates linking evidence in any additional corpus. Thus, we assume that systemat-
ically interconnecting a varied and representative set of resources is more robust and
may help with constructing an interconnected technology model more quickly, when
compared to a less systematic approach.

Journal of Object Technology, vol. 19, no. 2, 2020

Source: Marcel Heinz, Johannes Härtel, Ralf Lämmel: Reproducible Construction of Interconnected
Technology Models for EMF Code Generation. J. Object Technol. 19(2): 8:1-25 (2020). See also conference
version: Johannes Härtel, Marcel Heinz, Ralf Lämmel: EMF Patterns of Usage on GitHub. ECMFA 2018: 216-234

http://www.jot.fm/contents/issue_2020_02/article8.html
http://www.jot.fm/contents/issue_2020_02/article8.html

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

What’s the ontology behind megamodels?

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Table 1: Entity types in relevant papers.

P
a
p

e
r

A
r
ti

fa
c
t

F
u

n
c
ti

o
n

R
e
c
o
r
d

S
y
s
te

m

T
e
c
h

n
o
lo

g
y

L
a
n

g
u

a
g
e

I
n

f.
r
e
s
o
u

r
c
e

F
r
a
g
m

e
n

t

C
o
ll

e
c
ti

o
n

T
r
a
c
e

C
o
n

c
e
p

t

O
th

e
r
s

[1] x x x x x
[2] x x x x x x
[3] x x x x x
[4] x x x x x
[5] x x x x x
[6] x x
[7] x x x
[8] x x
[9] x x x

[10] x x x x x x x
[11] x x x x
[12] x x
[13] x x x x
[14] x x

Table 2: Relationship types in relevant papers.

P
a
p

e
r

C
o
n

fo
r
m

a
n

c
e

D
e
fi

n
it

io
n

C
o
r
r
e
s
p

o
n

d
e
n

c
e

I
m

p
le

m
e
n

ta
ti

o
n

U
s
a
g
e

M
e
m

b
e
r
s
h

ip

T
y
p

in
g

D
e
p

e
n

d
e
n

c
y

A
b

s
tr

a
c
t

r
e
l.

O
th

e
r
s

[1] x x
[2] x
[3] x x x x x x x
[4] x x x x x
[5] x x x
[6] x x x
[7] x
[8] x
[9] x x

[10] x x x x x x x x
[11] x x x x
[12] x x
[13] x
[14] x x

the identified classifiers and their coverage by the pa-
pers. The classification’s documentation including a
glossary for the classifiers can be found online.

A few papers contain informal descriptions of ad-
ditional entity types (see column ‘Inf. resources’). We
did not integrate these types, as they would be hard
to validate. A few papers point out abstract relation-
ships without concrete semantics (see column ‘Ab-
stract rel.’) which we did not integrate either. ‘Depen-
dency’ relationships are also not integrated since they
can be expressed more explicitly in terms of ‘Usage’.
The column ‘Others’ states the appearance of entity
and relationship types that are specific to a paper’s
megamodeling domain.

4 AXIOMATIZATION

When developers want to use technologies unknown
to them, it is crucial for them to understand what a
technology has to offer and how it is conceptually
structured. In order to reach a high degree of un-
derstandability and precision for the vocabulary ex-
pressing such conceptual knowledge we present a for-
mal axiomatization. We formulate the axioms here in
predicate logic for ease of reading and brevity; see
SoLaSoTe’s website for mechanized versions.

For each group of axioms, we provide a natural
language description and illustrative examples. The
axiomatization starts with ontological classification in
terms of subtyping as well as domain and range for
relationships. Afterwards, integrity constraints as in-
spired by (Tran and Debruyne, 2012) are stated. We
illustrate the usage of the predicates with scenarios
for EMF9. Similar knowledge can also be gathered
for other technological spaces (Kurtev et al., 2002),
e.g., SQL-Ware or XML-Ware. An ontology based
on the axiomatization may reuse defined vocabulary
from an upper ontology such as DOLCE (Gangemi
et al., 2002) that, e.g., already specifies part-hood.

4.1 Artifacts

Several disjoint subtypes of a root type Entity form the
basis of the core vocabulary. The first such type is Ar-

tifact with digital entities as instances. We distinguish
subtypes of Artifact: files and folders are represented
as instances of the types File and Folder. Files and
folders may not only appear in the local file system
but on a website, subject to the subtype WebResource.
Further, we introduce the subtype Transient for arti-
facts that only exist during program execution. Fi-
nally, we introduce the subtype Fragment for artifacts
that only exist as parts of other artifacts. (A fragment
cannot be a file or folder at the same time.)

Whether something is defined as an instance of
Artifact or one of the subtypes depends on the cho-
sen level of abstraction. A database can either be in a
single file or scattered over a folder. Thus, one may
choose to only define it as an Artifact without choos-
ing a specific subtype. An artifact can have multiple
types. We introduce a set of illustrative artifacts in Ta-
ble 3 to which we will relate in the rest of the paper.
In tables like this, we provide the exemplary entities
or relationships in the left column and an informal de-
scription in the right column.

9http://eclipsesource.com/blogs/tutorials/emf-tutorial/

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Table 1: Entity types in relevant papers.

P
a
p

e
r

A
r
ti

fa
c
t

F
u

n
c
ti

o
n

R
e
c
o
r
d

S
y
s
te

m

T
e
c
h

n
o
lo

g
y

L
a
n

g
u

a
g
e

I
n

f.
r
e
s
o
u

r
c
e

F
r
a
g
m

e
n

t

C
o
ll

e
c
ti

o
n

T
r
a
c
e

C
o
n

c
e
p

t

O
th

e
r
s

[1] x x x x x
[2] x x x x x x
[3] x x x x x
[4] x x x x x
[5] x x x x x
[6] x x
[7] x x x
[8] x x
[9] x x x

[10] x x x x x x x
[11] x x x x
[12] x x
[13] x x x x
[14] x x

Table 2: Relationship types in relevant papers.

P
a
p

e
r

C
o
n

fo
r
m

a
n

c
e

D
e
fi

n
it

io
n

C
o
r
r
e
s
p

o
n

d
e
n

c
e

I
m

p
le

m
e
n

ta
ti

o
n

U
s
a
g
e

M
e
m

b
e
r
s
h

ip

T
y
p

in
g

D
e
p

e
n

d
e
n

c
y

A
b

s
tr

a
c
t

r
e
l.

O
th

e
r
s

[1] x x
[2] x
[3] x x x x x x x
[4] x x x x x
[5] x x x
[6] x x x
[7] x
[8] x
[9] x x

[10] x x x x x x x x
[11] x x x x
[12] x x
[13] x
[14] x x

the identified classifiers and their coverage by the pa-
pers. The classification’s documentation including a
glossary for the classifiers can be found online.

A few papers contain informal descriptions of ad-
ditional entity types (see column ‘Inf. resources’). We
did not integrate these types, as they would be hard
to validate. A few papers point out abstract relation-
ships without concrete semantics (see column ‘Ab-
stract rel.’) which we did not integrate either. ‘Depen-
dency’ relationships are also not integrated since they
can be expressed more explicitly in terms of ‘Usage’.
The column ‘Others’ states the appearance of entity
and relationship types that are specific to a paper’s
megamodeling domain.

4 AXIOMATIZATION

When developers want to use technologies unknown
to them, it is crucial for them to understand what a
technology has to offer and how it is conceptually
structured. In order to reach a high degree of un-
derstandability and precision for the vocabulary ex-
pressing such conceptual knowledge we present a for-
mal axiomatization. We formulate the axioms here in
predicate logic for ease of reading and brevity; see
SoLaSoTe’s website for mechanized versions.

For each group of axioms, we provide a natural
language description and illustrative examples. The
axiomatization starts with ontological classification in
terms of subtyping as well as domain and range for
relationships. Afterwards, integrity constraints as in-
spired by (Tran and Debruyne, 2012) are stated. We
illustrate the usage of the predicates with scenarios
for EMF9. Similar knowledge can also be gathered
for other technological spaces (Kurtev et al., 2002),
e.g., SQL-Ware or XML-Ware. An ontology based
on the axiomatization may reuse defined vocabulary
from an upper ontology such as DOLCE (Gangemi
et al., 2002) that, e.g., already specifies part-hood.

4.1 Artifacts

Several disjoint subtypes of a root type Entity form the
basis of the core vocabulary. The first such type is Ar-

tifact with digital entities as instances. We distinguish
subtypes of Artifact: files and folders are represented
as instances of the types File and Folder. Files and
folders may not only appear in the local file system
but on a website, subject to the subtype WebResource.
Further, we introduce the subtype Transient for arti-
facts that only exist during program execution. Fi-
nally, we introduce the subtype Fragment for artifacts
that only exist as parts of other artifacts. (A fragment
cannot be a file or folder at the same time.)

Whether something is defined as an instance of
Artifact or one of the subtypes depends on the cho-
sen level of abstraction. A database can either be in a
single file or scattered over a folder. Thus, one may
choose to only define it as an Artifact without choos-
ing a specific subtype. An artifact can have multiple
types. We introduce a set of illustrative artifacts in Ta-
ble 3 to which we will relate in the rest of the paper.
In tables like this, we provide the exemplary entities
or relationships in the left column and an informal de-
scription in the right column.

9http://eclipsesource.com/blogs/tutorials/emf-tutorial/

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

© 2017 Software Languages Team

Understanding Membership

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

© 2017 Software Languages Team

Understanding Membership

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Classified entities on Wikipedia/Dbpedia

Source: Marcel Heinz, Ralf Lämmel, Mathieu Acher: Discovering Indicators for Classifying
Wikipedia Articles in a Domain - A Case Study on Software Languages. SEKE 2019: 541-706

https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Source: Marcel Heinz, Ralf Lämmel, Mathieu Acher: Discovering Indicators for Classifying
Wikipedia Articles in a Domain - A Case Study on Software Languages. SEKE 2019: 541-706

ML approach to Wikipedia-based classification

https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

I wish megamodeling was here.

(At Facebook or such.)

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

• Central service registry

• DB shard management

• ML workflow management

• Data pipeline management

• Configuration

• Package management

• Release management

• …

Megamodels in the wild

… basically some
forms of DevOps
through UI and

CLI.

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

1 — Nesting based on dependencies

2 — Historical (per-day) executions

Source: Mike Starr, Dataswarm, Youtube video

Data pipeline management (at Facebook)

https://www.youtube.com/watch?v=M0VCbhfQ3HQ&list=PL_EeYa3aRS55QAbL851AF5FIHlCcN9xbp

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

• Recover from blackout;

• Abstract from implementation layers;;

• Generate automatic documentation;

• Mine workflows from infra logging;

• Use models other than through UI/CLI;

• Handle cross-repo scope;

• …

We can’t …
Fragmented DevOps

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Call to arms!

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

• i) Megamodeling languages are DSLs, subject to designated efforts in
analysis, design, and implementation. (How to fight fragmentation?)

• ii) Especially analysis involves ontology engineering for concepts,
languages, types of artifacts, and relationships. (How to organize such
an effort? Dagstuhl?)

• iii) The basic DSL semantics serves validation of megamodel
instances. (How to rework technological spaces to support such
megamodeling seamlessly.)

• iv) The alignment of megamodels and reality requires MSR-style
information retrieval and reverse engineering. (See basic ideas in our
recent papers.)

• v) What's the AST to classical software languages, that's the
knowledge graph to megamodeling DSLs. (Build a system / a
knowledge graph that can be used by developers.)

Enjoy an SLE view on megamodeling

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

SoLaSoTe
ontology

Linguistic
architecture

Social
coding

Software
chrestomathy 101

Code Doc Wiki

Megamodeling with
MegaL

EMF
Java
Django

Figure 1: Ontology engineering process for SoLaSoTe.

also embedded into a process for ontology engineer-
ing aiming at better understanding usage of software
languages and technologies.

Road-map of the Paper. Sec. 2 summarizes the un-
derlying process for ontology engineering. Sec. 3 sur-
veys research on megamodeling. Sec. 4 develops the
axiomatization. Sec. 5 concludes the paper.

2 ONTOLOGY ENGINEERING

Our work on SoLaSoTe adopts the notion of ontology
engineering (Corcho et al., 2006; Calero et al., 2006;
Oberle et al., 2006; d’Aquin and Gangemi, 2011)
through a process involving three pillars:

Chrestomathy. We have been contributing to
the software chrestomathy ‘101companies’ (or just
‘101’) (Favre et al., 2012b)4 which is a collection
of small software systems that implement a common
feature model while aiming at representing best prac-
tices and options of language usage, technology us-
age, and software design. The systems are docu-
mented on a semantic wiki; the documentation in-
cludes properties of language and technology usage.

MegaL. We have been designing megamodeling
languages for linguistic architecture, most notably
MegaL5 (Favre et al., 2012a). The megamodels de-
clare how ‘digital’ entities (such as files or objects)
and ‘conceptual’ entities (such as languages or pro-
gramming techniques) relate in the context of scenar-
ios of technology and language usage. Such declara-
tions can be verified (Lämmel and Varanovich, 2014).

SoLaSoTe. The ontology provides a framework for
documentation of usage scenarios and actual systems.

4http://101companies.org/
5http://www.softlang.org/megal

The ontology includes reusable facts or general ax-
ioms. There are two aspects: linguistic architecture—
the focus of this paper—and social coding—an exten-
sion for developer roles and corresponding relation-
ships not further discussed in this paper.

University courses, professional education, open-
source development, summer schools, and scholarly
work are used to advance 101, MegaL, or SoLaSoTe.
These three pillars are mutually dependent; see Fig. 1.
Progress at individual pillars and continuous review-
ing help propagating knowledge about technology
and language usage from pillar to pillar.

3 LITERATURE SURVEY

This section presents a survey with regard to the fol-
lowing research question: ‘What kind of entity and
relationship types exist in related work on megamod-
eling?’. Details and datasets are available from So-
LaSoTe’s website (see first page). The presented
overview serves as a justification for the choice of the
core vocabulary in the emerging ontology.

We searched for papers at ‘ACM Digital Li-
brary’ (ACM)6, ‘Springer Link’ (Springer)7 and
‘IEEE Xplore Digital Library’ (IEEE)8 using the
sites’ search engines with the search string ‘”mega

model” OR ”mega-model” OR ”megamodel”’.
While ACM’s and IEEE’s default search settings only
consider structured content (such as title, abstract and
keywords), for Springer, we had to manually check
search results for a match in the abstract, title or key-
words while restricting the results to be in the soft-
ware engineering category ‘SWE’. We did not per-
form snowballing (Wohlin, 2014) to limit the amount
of papers, as the analysis for paper inclusion is rela-
tively laborious.

We screened the identified papers explicitly for
relevance based on the following criteria. We in-

cluded all papers that define types of megamodel el-
ements in a dedicated section, a schematic notation,
or a metamodel. We excluded explicit doubles and
papers that only show language elements that are pre-
sented in a preceding paper.

We classified the entity and relationship types
from the relevant papers. One paper (Favre et al.,
2012a) was chosen to provide an initial set of clas-
sifiers for entity and relationship types. We incremen-
tally updated the set by newly identified classifiers ac-
cording to the typical process of a mapping study (El-
berzhager et al., 2012). Table 1 and Table 2 presents

6http://dl.acm.org/
7http://link.springer.com/
8http://ieeexplore.ieee.org/Xplore/home.jsp

Combine ontologies and chrestomathies
in a megamodeling context

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

�ȩǕŏȘȘƚɯ mşɟɾƚȀࡈ �ʕǺŏɯ mşɟɾƚȀࡈ �ŏɟżƚȀ mƚǞȘˌࡈ áŏȀǀ �şȒȒƚȀࡈ ŏȘƇ �ȘƇɟƚǞ ģŏɟŏȘȩʲǞżǕ

_Ǟǃʕɟƚ ߫ߧ &YQMPSBCMF USBDF MJOLT JO �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C GPS BO FYUFOEFE ĭ�� TUPSZ XJUI JOWPMWF�
NFOU PG ĭ���EBUB CJOEJOH
 J�F�
 �ŏʲŏ�DMBTT HFOFSBUJPO GSPN BO ĭ�� TDIFNB� 5IF
USBDF BU UIF UPQ TIPXT TJNJMBSJUZ PG ĭë4 TDIFNB WFSTVT �ŏʲŏ DMBTTFT� 5IF USBDF
CFMPX TIPXT TJNJMBSJUZ PG ĭ�� EPDVNFOU WFSTVT �ŏʲŏ PCKFDU 	QBTU EFTFSJBMJ[BUJPO
�
5IF JOEFOUFE SPXT BSF GSBHNFOUT 	QBSU PG
 UIF ƐMFT� 'SBHNFOUFE 63*T BSF VTFE
XIFSF BQQMJDBCMF� 4JNJMBS USBDFT BSJTF JO UIF C�_ TUPSZ XJUI HFOFSBUJPO BOE
TFSJBMJ[BUJPO PG 4FD� Ɔ�

BOE UIFJS DPSSFTQPOEFODF JO UIF GPSN PG EFEJDBUFE NPEFM FMFNFOUT BOE JOUFSDPOOFD�
UJPOT� 4FF 'JH� ƅƈ GPS BO JMMVTUSBUJPO BOE 'JH� ƅƉ GPS B TOBQTIPU PG UIF SFBMJ[FE USBDF
WJTVBMJ[BUJPO QMVHJO� 5IF SFBMJ[BUJPO TIPXT BMM DPSSFTQPOEFODF SFMBUJPOT CFUXFFO
FOUJUJFT
 J�F�
 UIF USBDF
 BT SPXT� 5IF OFTUJOH TUSVDUVSF PG UIF SPXT UIBU JT VTFE GPS
DPMMBQTJOH GPMMPXT UIF BDUVBM DPNQPTJUJPO PG UIF DPSSFTQPOEJOH FOUJUJFT� 4JODF UIF DPO�
HSVFODF PG TUSVDUVSF PO CPUI TJEFT PG UIF USBDF JT OPU OFDFTTBSJMZ HJWFO 	F�H�
 CZ IBWJOH
JOUFSNFEJBUF GSBHNFOUT PS WBSZJOH OFTUJOH

 UIF SFBMJ[BUJPO EFUFSNJOFT POF SPPU PO
UIF MFGU DPMVNO BOE USBWFSTFT QBSUT SFDVSTJWFMZ� 5IFSFCZ
 UIF SPXT BSF QPQVMBUFE BOE
UIF OFTUJOH JT VOJRVFMZ EFƐOFE�

ߪ CʲŏȀʕŏɾǞȩȘ

0VS FWBMVBUJPO JT UXPGPME� 'JSTUMZ
 XF TVSWFZ MJUFSBUVSF JO UIF DPOUFYU PG NFHBNPEFMJOH
XJUI SFHBSE UP UIF BTQFDUT PG JOUFSDPOOFDUFE NFHBNPEFMT� 4FDPOEMZ
 PVS JNQMFNFOUB�
UJPO BOE PVS DBTF TUVEJFT BSF BTTFTTFE PO UIF BTQFDUT�

ߧࡏߪ �Ǟɾƚɟŏɾʕɟƚ ɯʕɟʲƚʿ

8F TFBSDIFE GPS DPOGFSFODF BOE KPVSOBM QVCMJDBUJPOT PO %#-1 XJUI NFOUJPO PG NFH�
BNPEFM	T
 BOE NFHBNPEFMJOH� *O UIJT NBOOFS
 XF MPDBUFE QBQFST UIBU FOIBODF UIF
NFHBNPEFMJOH OPUJPO <Ƌ
 ƅƆ>
 JEFOUJGZ BQQMJDBUJPO EPNBJOT <ƇƄ
 ƅƉ
 ƅƅ
 ƅƋ>
 BOE DPO�
TPMJEBUF UIF GPVOEBUJPO <ƆƉ
 Ƈ
 ƈ
 ƅƄ>�

*O UIFTF QBQFST
 XF BJNFE UP JEFOUJGZ PDDVSSFODFT PG PVS BTQFDUT PG JOUFSDPOOFDUFE
NFHBNPEFMT� 5IF SFTVMUT BSF HJWFO JO UIF VQQFS QBSU PG 5BC� Ɔ XIFSF UIF TJ[F PG B
CVMMFU DPSSFTQPOET UP UIF MFWFM PG DPWFSBHF� BO FNQUZ DFMM NFBOT UIBU UIF SFMFWBOU

ߧߨࡷߩ

�ȩǕŏȘȘƚɯ mşɟɾƚȀࡈ �ʕǺŏɯ mşɟɾƚȀࡈ �ŏɟżƚȀ mƚǞȘˌࡈ áŏȀǀ �şȒȒƚȀࡈ ŏȘƇ �ȘƇɟƚǞ ģŏɟŏȘȩʲǞżǕ

_Ǟǃʕɟƚ ߫ߧ &YQMPSBCMF USBDF MJOLT JO �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C GPS BO FYUFOEFE ĭ�� TUPSZ XJUI JOWPMWF�
NFOU PG ĭ���EBUB CJOEJOH
 J�F�
 �ŏʲŏ�DMBTT HFOFSBUJPO GSPN BO ĭ�� TDIFNB� 5IF
USBDF BU UIF UPQ TIPXT TJNJMBSJUZ PG ĭë4 TDIFNB WFSTVT �ŏʲŏ DMBTTFT� 5IF USBDF
CFMPX TIPXT TJNJMBSJUZ PG ĭ�� EPDVNFOU WFSTVT �ŏʲŏ PCKFDU 	QBTU EFTFSJBMJ[BUJPO
�
5IF JOEFOUFE SPXT BSF GSBHNFOUT 	QBSU PG
 UIF ƐMFT� 'SBHNFOUFE 63*T BSF VTFE
XIFSF BQQMJDBCMF� 4JNJMBS USBDFT BSJTF JO UIF C�_ TUPSZ XJUI HFOFSBUJPO BOE
TFSJBMJ[BUJPO PG 4FD� Ɔ�

BOE UIFJS DPSSFTQPOEFODF JO UIF GPSN PG EFEJDBUFE NPEFM FMFNFOUT BOE JOUFSDPOOFD�
UJPOT� 4FF 'JH� ƅƈ GPS BO JMMVTUSBUJPO BOE 'JH� ƅƉ GPS B TOBQTIPU PG UIF SFBMJ[FE USBDF
WJTVBMJ[BUJPO QMVHJO� 5IF SFBMJ[BUJPO TIPXT BMM DPSSFTQPOEFODF SFMBUJPOT CFUXFFO
FOUJUJFT
 J�F�
 UIF USBDF
 BT SPXT� 5IF OFTUJOH TUSVDUVSF PG UIF SPXT UIBU JT VTFE GPS
DPMMBQTJOH GPMMPXT UIF BDUVBM DPNQPTJUJPO PG UIF DPSSFTQPOEJOH FOUJUJFT� 4JODF UIF DPO�
HSVFODF PG TUSVDUVSF PO CPUI TJEFT PG UIF USBDF JT OPU OFDFTTBSJMZ HJWFO 	F�H�
 CZ IBWJOH
JOUFSNFEJBUF GSBHNFOUT PS WBSZJOH OFTUJOH

 UIF SFBMJ[BUJPO EFUFSNJOFT POF SPPU PO
UIF MFGU DPMVNO BOE USBWFSTFT QBSUT SFDVSTJWFMZ� 5IFSFCZ
 UIF SPXT BSF QPQVMBUFE BOE
UIF OFTUJOH JT VOJRVFMZ EFƐOFE�

ߪ CʲŏȀʕŏɾǞȩȘ

0VS FWBMVBUJPO JT UXPGPME� 'JSTUMZ
 XF TVSWFZ MJUFSBUVSF JO UIF DPOUFYU PG NFHBNPEFMJOH
XJUI SFHBSE UP UIF BTQFDUT PG JOUFSDPOOFDUFE NFHBNPEFMT� 4FDPOEMZ
 PVS JNQMFNFOUB�
UJPO BOE PVS DBTF TUVEJFT BSF BTTFTTFE PO UIF BTQFDUT�

ߧࡏߪ �Ǟɾƚɟŏɾʕɟƚ ɯʕɟʲƚʿ

8F TFBSDIFE GPS DPOGFSFODF BOE KPVSOBM QVCMJDBUJPOT PO %#-1 XJUI NFOUJPO PG NFH�
BNPEFM	T
 BOE NFHBNPEFMJOH� *O UIJT NBOOFS
 XF MPDBUFE QBQFST UIBU FOIBODF UIF
NFHBNPEFMJOH OPUJPO <Ƌ
 ƅƆ>
 JEFOUJGZ BQQMJDBUJPO EPNBJOT <ƇƄ
 ƅƉ
 ƅƅ
 ƅƋ>
 BOE DPO�
TPMJEBUF UIF GPVOEBUJPO <ƆƉ
 Ƈ
 ƈ
 ƅƄ>�

*O UIFTF QBQFST
 XF BJNFE UP JEFOUJGZ PDDVSSFODFT PG PVS BTQFDUT PG JOUFSDPOOFDUFE
NFHBNPEFMT� 5IF SFTVMUT BSF HJWFO JO UIF VQQFS QBSU PG 5BC� Ɔ XIFSF UIF TJ[F PG B
CVMMFU DPSSFTQPOET UP UIF MFWFM PG DPWFSBHF� BO FNQUZ DFMM NFBOT UIBU UIF SFMFWBOU

ߧߨࡷߩ

Support deep relationships

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

�ȩǕŏȘȘƚɯ mşɟɾƚȀࡈ �ʕǺŏɯ mşɟɾƚȀࡈ �ŏɟżƚȀ mƚǞȘˌࡈ áŏȀǀ �şȒȒƚȀࡈ ŏȘƇ �ȘƇɟƚǞ ģŏɟŏȘȩʲǞżǕ

EXLOG�[PO
Ô=PDG?Õ
��Ô���Õ
��Ô��Õ
����Ô���Õ
����Ô���Õ
��Ô���Õ
��Ô���Õ�
Ô�=PDG?Õ

$
%

'

&

_Ǟǃʕɟƚ ߦߧ " EFQJDUJPO PG EBUB ƑPX BOE SFMBUFE USBOTJFOU TUBUFT� " BOE # SFQSFTFOU XFC
SFRVFTU BOE SFTQPOTF
 SFTQFDUJWFMZ
 $ EFQJDUT QJQJOH PG QSPHSBN PVUQVU
 BOE %
TIPXT USBOTJFOU EBUB JO NFNPSZ PS EBUBCBTF�

.PSF TQFDJƐDBMMZ
 UIFSF BSF TPNF PQUJPOT GPS BDDFTT UP USBOTJFOU BSUJGBDUT� 'JSTUMZ

JOUFSDFQUJPO BU SVOUJNF 	TVDI BT NFHBNPEFM BOE TZTUFN FYFDVUJPO JO UIF TBNF +7.

NBZ MFWFSBHF B EFCVHHJOH JOUFSGBDF PS BTQFDU�PSJFOUFE QSPHSBNNJOH� 4FDPOEMZ
 JO�
UFSDFQUJPO JO B OFUXPSL VTFE GPS EJTUSJCVUJPO NBZ MFWFSBHF OFUXPSL�TOPPQJOH PS UIF
JOUSPEVDUJPO PG B NJEEMFNBO JO B QJQF� 5IJSEMZ
 B TZTUFN NBZ BMTP CF JOTUSVNFOUFE UP
QSPWJEF BDDFTT UP USBOTJFOU BSUJGBDUT UISPVHI BDDFTTPS NFUIPET�

áƚŏȀǞˌŏɾǞȩȘ �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C SFRVJSFT UIBU USBOTJFOU BSUJGBDUT BSF PCUBJOFE EVSJOH
BO JOGFSFODF QIBTF 	TFF 4FD� Ƈ�Ɗ
 UIBU QSFDFEFT UIF FWBMVBUJPO PG SFMBUJPOTIJQT� "T
PG XSJUJOH
 XF MFWFSBHF UIF BGPSFNFOUJPOFE PQUJPO PG DPEF JOTUSVNFOUBUJPO TP UIBU
USBOTJFOU BSUJGBDUT BSF FYQPTFE CZ �ŏʲŏ NFUIPET UIBU FYFDVUF UIF OFDFTTBSZ TUFQT BOE
SFUVSO UIF USBOTJFOU BSUJGBDU BT B +BWB PCKFDU XIJDI JT DBQUVSFE BMPOH NFHBNPEFM
FYFDVUJPO� 5IJT PQUJPO JT TVCPQUJNBM CFDBVTF JU NBZ JNQMZ TPNF EFHSFF PG TZTUFN
SFGBDUPSJOH PS FYUFOTJPO�

'PS JOTUBODF
 UIF GVODUJPO $VTUPN4FSJBMJ[F JO UIF "1* TUPSZ SFMJFT PO B TUBUJD NFUIPE
XIJDI SFBET BO &.' SFTPVSDF XJUI B NPEFM BU UIF HJWFO 63*�

żȀŏɯɯ ÚƚɟɯǞɯɾ ࡝
ɔʕųȀǞż ɯɾŏɾǞż áƚɯȩʕɟżƚ ƇƚɯƚɟǞŏȀǞˌƚĭ�v࡫Ćáv ȒȩƇƚȀ࡬ ࡝ ࡏࡏࡏ ࡞

࡞

5IF GVODUJPO FOUJUZ IBT UP CF CPVOE UP UIF NFUIPE�

+ʕɯɾȩȒ4ƚɯƚɟǞŏȀǞˌƚ ࣣ ࢈ĆávॆɟࣣáƚɯȩʕɟżƚࣣߧɔࡐߧࡕƇƚɯƚɟǞŏȀǞˌƚĭ�vࡕÚƚɟɯǞɯɾࡕࡏࡏࡏࡇżȀŏɯɯɔŏɾǕ࢈

5IBU JT
 UIF EFTFSJBMJ[F9.* NFUIPE PG DMBTT 1FSTJTU JT TFMFDUFE� UIF FYUSB Ē�ƅē JOTJTUT PO
NFUIPET XJUI POF QBSBNFUFS 	JO UIF WJFX PG PWFSMPBEJOH
� UIF 63- BSHVNFOU ĒQƅ����ē
EFTDSJCFT UIF UZQF PG UIF ƐSTU NFUIPE QBSBNFUFS� MJLFXJTF ĒS����ē GPS UIF SFTVMU UZQF�
0OUPMPHJDBMMZ
 UIJT JT B TIPSUDVU CFDBVTF XF TIPVME TBZ UIBU UIF BDUVBM NFUIPE EFƑOFT
B GVODUJPO BOE TP XF XPVME IBWF BO BSUJGBDU� 	B GSBHNFOU�
 UZQFE FOUJUZ XIJDI JT
CPVOE� 'PS DPOWFOJFODFēT TBLF
 UIF GVODUJPO FOUJUZ JO UIF NFHBNPEFM HFUT EJSFDUMZ
CPVOE JOTUFBE�

߭ߧࡷߩ

Support transients in megamodels

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

vȘɾƚɟżȩȘȘƚżɾƚƇ �ǞȘǃʕǞɯɾǞż �ɟżǕǞɾƚżɾʕɟƚ

<ƇƄ> Ě Ě Ě Ě

<Ƌ> Ě Ě Ě

<ƆƉ> Ě Ě Ě Ě Ě

<ƅƉ> Ě Ě Ě

<ƅƅ> Ě Ě Ě

<ƅƋ> Ě Ě Ě Ě

<ƅƆ> Ě Ě Ě Ě

<Ƈ> Ě Ě Ě Ě

<ƈ> Ě Ě Ě Ě Ě

	<ƅƄ>
 Ě Ě Ě Ě Ě Ě

L3 � � �
L2 ⌦ ⇥ ⇥ ⇥ �
L1 ⌦ ⇥ � � ⇥ ⇥

Ƈ�ƌ Ƈ�ƅ Ƈ�Ɗ Ƈ�Ƈ Ƈ�Ƌ Ƈ�ƈ Ƈ�Ɔ Ƈ�Ɖ

5S
BD
FB

CJ
MJU
Z

MJO
LT

"
SU
JGB

DU
CJ
OE

JO
H

.
PE

FM
JO
GF
SF
OD

F

1M
VH

HB
CM
F

BO
BM
ZT
FT

&Y
QM
PS
BC

MF
DP

OO
FD
UJP

OT

.
PE

VM
BS
J[
FE

N
PE

FM
T

4F
N
BO

UJD
BO

OP
UB
UJP

OT

5S
BO

TJ
FO

U
BS
UJG
BD
UT

÷ŏųȀƚ ߨ 6QQFS QBSU� .BQQJOH PG PUIFS NFHBNPEFMJOH SFMBUFE QBQFST UP PVS BTQFDUT
 CJHHFS
EPUT EFQJDU TUSPOHFS GPDVT� 5IF QBQFS <ƅƄ> JT TIPXO JO QBSFOUIFTFT CFDBVTF PG
BO PWFSMBQ PG UIF BVUIPST XJUI UIPTF PG UIF DVSSFOU QBQFS� -PXFS QBSU� NBUVSJUZ
PG �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C
 SFHBSEJOH JNQMFNFOUBUJPO 	�
 BOE UIF EFNPOTUSBUJPO 	⇥

CBTFE PO NBUVSJUZ MFWFMTĐSBOHJOH MPXFTU UP IJHIFTU GSPN L1 UP L3�

BTQFDU XBT OPU QSFTFOU JO UIF QBQFS� B TNBMM CVMMFU EFQJDUT TPNF DPWFSBHF UISPVHI UIF
JEFOUJƐDBUJPO PG UIF UPQJD PS TPNF MJNJUFE JNQMFNFOUBUJPO� B CJH CVMMFU EFQJDUT GVMM
DPWFSBHF BOE FYUFOTJPO�

*U UVSOT PVU UIBU BSUJGBDU CJOEJOH
 USBDFBCJMJUZ MJOLT
 BOE JOGFSFODF BSF DPWFSFE WFSZ
XFMM� 0VS XPSL CSJOHT UIFTF BTQFDUT UP UIF BSFB PG MJOHVJTUJD BSDIJUFDUVSFĐBT B QBSUJD�
VMBS GPSN PG NFHBNPEFMJOH� 4PNF JOTQFDUFE BQQSPBDIFT VTF NPEFM USBOTGPSNBUJPO
USBDFT 	F�H�
 GPS JNQBDU BOBMZTJT
� UIJT SFRVJSFT JEFOUJGZJOH TPVSDF BOE UBSHFU FMFNFOUT
PG B USBOTGPSNBUJPO <ƅƅ
 ƅƋ
 Ƈ
 ƈ
 ƅƄ>� 8F BVUPNBUF UIJT BQQSPBDI CBTFE PO UIF BTQFDUT
Ē.PEFM JOGFSFODFē BOE 	SFDPWFSZ PG
 Ē5SBDFBCJMJUZ MJOLTē� "OBMZTJT PG NPEFMT 	JO UIF
TFOTF PG ĒQMVHHBCMF BOBMZTFTē

 JT OPU DPWFSFE BT XFMM� "OBMZTFT BSF NBJOMZ EFMFHBUFE UP
NBLJOH UIF JNQMJDJU TUSVDUVSF FYQMJDJU BOE DIFDLJOH NPEFM DPOTUSBJOUT UIFSFBGUFS� 4PNF
BQQSPBDIFT TVQQPSU TVDI DIFDLT CZ OBUJWF DPEF
 JO B ĒQMVHHBCMF BOBMZTJTē GBTIJPO <ƅƅ
 ƅƋ>

PUIFST SFMZ PO FTUBCMJTIFE NPEFM DIFDLJOH TPMVUJPOT XIJDI VUJMJ[F B SVMF TQFDJƐDBUJPO
GPSNBU <ƇƄ
 Ƌ
 ƆƉ
 ƅƉ
 ƅƋ
 ƅƆ>� &YQMPSBUJPO JT DPWFSFE JO TFWFSBM DBTFT <ƅƄ
 ƆƉ
 ƅƉ
 ƅƅ
 ƅƋ
 Ƈ>

NBJOMZ EVF UP WJTVBMJ[BUJPO PG DPNQMFY JOUFS�NPEFM DPOOFDUJPOT TVDI BT USBDFBCJMJUZ
MJOLT� .PEVMBSJ[BUJPO JT OPU XJEFMZ QSFTFOU� 0VS OPUJPO PG TFNBOUJD BOOPUBUJPOT BT
XFMM BT USBOTJFOU BSUJGBDUT BSF MFBTU DPWFSFE CZ PUIFS BQQSPBDIFT� &WFO UIPVHI MJOLJOH
GBDJMJUJFT BSF VUJMJ[FE PGUFO <ƇƄ
 ƅƉ
 ƅƅ
 ƅƋ
 ƈ>� UIFTF GBDJMJUJFT BSF MJNJUFE JO UFSNT PG
UIF LJOE PG BSUJGBDUT UIFZ DBO BEESFTT� 5SBOTJFOU BSUJGBDUT BSF POMZ DPWFSFE NBSHJOBMMZ�

ߨߨࡷߩ

Embrace principles of interconnection

vȘɾƚɟżȩȘȘƚżɾƚƇ �ǞȘǃʕǞɯɾǞż �ɟżǕǞɾƚżɾʕɟƚ

<ƇƄ> Ě Ě Ě Ě

<Ƌ> Ě Ě Ě

<ƆƉ> Ě Ě Ě Ě Ě

<ƅƉ> Ě Ě Ě

<ƅƅ> Ě Ě Ě

<ƅƋ> Ě Ě Ě Ě

<ƅƆ> Ě Ě Ě Ě

<Ƈ> Ě Ě Ě Ě

<ƈ> Ě Ě Ě Ě Ě

	<ƅƄ>
 Ě Ě Ě Ě Ě Ě

L3 � � �
L2 ⌦ ⇥ ⇥ ⇥ �
L1 ⌦ ⇥ � � ⇥ ⇥

Ƈ�ƌ Ƈ�ƅ Ƈ�Ɗ Ƈ�Ƈ Ƈ�Ƌ Ƈ�ƈ Ƈ�Ɔ Ƈ�Ɖ

5S
BD
FB

CJ
MJU
Z

MJO
LT

"
SU
JGB

DU
CJ
OE

JO
H

.
PE

FM
JO
GF
SF
OD

F

1M
VH

HB
CM
F

BO
BM
ZT
FT

&Y
QM
PS
BC

MF
DP

OO
FD
UJP

OT

.
PE

VM
BS
J[
FE

N
PE

FM
T

4F
N
BO

UJD
BO

OP
UB
UJP

OT

5S
BO

TJ
FO

U
BS
UJG
BD
UT

÷ŏųȀƚ ߨ 6QQFS QBSU� .BQQJOH PG PUIFS NFHBNPEFMJOH SFMBUFE QBQFST UP PVS BTQFDUT
 CJHHFS
EPUT EFQJDU TUSPOHFS GPDVT� 5IF QBQFS <ƅƄ> JT TIPXO JO QBSFOUIFTFT CFDBVTF PG
BO PWFSMBQ PG UIF BVUIPST XJUI UIPTF PG UIF DVSSFOU QBQFS� -PXFS QBSU� NBUVSJUZ
PG �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C
 SFHBSEJOH JNQMFNFOUBUJPO 	�
 BOE UIF EFNPOTUSBUJPO 	⇥

CBTFE PO NBUVSJUZ MFWFMTĐSBOHJOH MPXFTU UP IJHIFTU GSPN L1 UP L3�

BTQFDU XBT OPU QSFTFOU JO UIF QBQFS� B TNBMM CVMMFU EFQJDUT TPNF DPWFSBHF UISPVHI UIF
JEFOUJƐDBUJPO PG UIF UPQJD PS TPNF MJNJUFE JNQMFNFOUBUJPO� B CJH CVMMFU EFQJDUT GVMM
DPWFSBHF BOE FYUFOTJPO�

*U UVSOT PVU UIBU BSUJGBDU CJOEJOH
 USBDFBCJMJUZ MJOLT
 BOE JOGFSFODF BSF DPWFSFE WFSZ
XFMM� 0VS XPSL CSJOHT UIFTF BTQFDUT UP UIF BSFB PG MJOHVJTUJD BSDIJUFDUVSFĐBT B QBSUJD�
VMBS GPSN PG NFHBNPEFMJOH� 4PNF JOTQFDUFE BQQSPBDIFT VTF NPEFM USBOTGPSNBUJPO
USBDFT 	F�H�
 GPS JNQBDU BOBMZTJT
� UIJT SFRVJSFT JEFOUJGZJOH TPVSDF BOE UBSHFU FMFNFOUT
PG B USBOTGPSNBUJPO <ƅƅ
 ƅƋ
 Ƈ
 ƈ
 ƅƄ>� 8F BVUPNBUF UIJT BQQSPBDI CBTFE PO UIF BTQFDUT
Ē.PEFM JOGFSFODFē BOE 	SFDPWFSZ PG
 Ē5SBDFBCJMJUZ MJOLTē� "OBMZTJT PG NPEFMT 	JO UIF
TFOTF PG ĒQMVHHBCMF BOBMZTFTē

 JT OPU DPWFSFE BT XFMM� "OBMZTFT BSF NBJOMZ EFMFHBUFE UP
NBLJOH UIF JNQMJDJU TUSVDUVSF FYQMJDJU BOE DIFDLJOH NPEFM DPOTUSBJOUT UIFSFBGUFS� 4PNF
BQQSPBDIFT TVQQPSU TVDI DIFDLT CZ OBUJWF DPEF
 JO B ĒQMVHHBCMF BOBMZTJTē GBTIJPO <ƅƅ
 ƅƋ>

PUIFST SFMZ PO FTUBCMJTIFE NPEFM DIFDLJOH TPMVUJPOT XIJDI VUJMJ[F B SVMF TQFDJƐDBUJPO
GPSNBU <ƇƄ
 Ƌ
 ƆƉ
 ƅƉ
 ƅƋ
 ƅƆ>� &YQMPSBUJPO JT DPWFSFE JO TFWFSBM DBTFT <ƅƄ
 ƆƉ
 ƅƉ
 ƅƅ
 ƅƋ
 Ƈ>

NBJOMZ EVF UP WJTVBMJ[BUJPO PG DPNQMFY JOUFS�NPEFM DPOOFDUJPOT TVDI BT USBDFBCJMJUZ
MJOLT� .PEVMBSJ[BUJPO JT OPU XJEFMZ QSFTFOU� 0VS OPUJPO PG TFNBOUJD BOOPUBUJPOT BT
XFMM BT USBOTJFOU BSUJGBDUT BSF MFBTU DPWFSFE CZ PUIFS BQQSPBDIFT� &WFO UIPVHI MJOLJOH
GBDJMJUJFT BSF VUJMJ[FE PGUFO <ƇƄ
 ƅƉ
 ƅƅ
 ƅƋ
 ƈ>� UIFTF GBDJMJUJFT BSF MJNJUFE JO UFSNT PG
UIF LJOE PG BSUJGBDUT UIFZ DBO BEESFTT� 5SBOTJFOU BSUJGBDUT BSF POMZ DPWFSFE NBSHJOBMMZ�

ߨߨࡷߩ

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Consider the following megamodel (in fact, megamodeling pattern) of a file and a
language being related such that the former (in terms of its content) is an element of
the latter.

[Label=”File with language”, Operator=”Addition”]
+ ?aLanguage : Language // some language
+ ?aFile : File // some file
+ aFile elementOf aLanguage // associate language with file

In a next step, let us instantiate the language parameter to actually commit to the
specific language Java. Thus:

[Label=”A Java file”, Operator=”Instantiation”]
+ Java : Language // pick a specific language
+ aFile elementOf Java // associate the file with Java
- ?aLanguage : Language // removal of language parameter
- aFile elementOf aLanguage // removal of reference to language parameter

Fig. 2. An illustrative renarration

– An operator to describe the intent of the step. Each operator implies specific
constraints on the delta, as discussed below.

The steps are interleaved with informal explanations.
See Figure 2 for a trivial, illustrative renarration. The first step introduces

some entities and relates them. Nothing is removed; thus, the use of the opera-
tor ‘Addition’. The second step instantiates the megamodel to a more concrete
situation. The more general declarations are removed according to the delta and
more specific declarations are added; thus, the use of the operator ‘Instantiation’.
Arguably, the instantiation could be characterized more concisely than by listing
the delta, but we like to emphasize the utility of deltas for at least explaining
the intended semantics of the renarration operators.

5 Renarration operators

The illustrative renarration of Figure 2 has started to reveal some operators:
addition and instantiation. In this section, we provide a catalogue of operators.
In the next section, the operators will be illustrated by a larger renarration.

– Addition: declarations are exclusively added; there are no removals. Use this
operator to enhance a megamodel through added entities and to constrain
a megamodel through added relationships.

– Removal : the opposite of Addition.
– Restriction: net total of addition and removal is such that entities may be

restricted to be of more specific types. Also, the set operand of ‘elementOf’
and the super-set operand of ‘subsetOf’ relationships may be restricted.

– Generalization: the opposite of Restriction.

Enable renarration of megamodels

Source: Ralf Lämmel, Vadim Zaytsev: Language Support for Megamodel Renarration. XM@MoDELS 2013: 36-45

http://ceur-ws.org/Vol-1089/5.pdf

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

Thanks!
Let’s discuss.

Ralf Lämmel, Facebook, London and University of Koblenz-Landau, 2021-02-09 — MODELSWARD 2021 Keynote

• Marcel Heinz, Johannes Härtel, Ralf Lämmel: Reproducible Construction of Interconnected Technology
Models for EMF Code Generation. J. Object Technol. 19(2): 8:1-25 (2020). See also conference version:
Johannes Härtel, Marcel Heinz, Ralf Lämmel: EMF Patterns of Usage on GitHub. ECMFA 2018: 216-234

• Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio:
Understanding MDE projects: megamodels to the rescue for architecture recovery. Softw. Syst. Model.
19(2): 401-423 (2020). See also conference version: Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico
Iovino, Ralf Lämmel, Alfonso Pierantonio: Systematic Recovery of MDE Technology Usage. ICMT 2018: 110-126

• Marcel Heinz, Ralf Lämmel, Mathieu Acher: Discovering Indicators for Classifying Wikipedia Articles in a
Domain - A Case Study on Software Languages. SEKE 2019: 541-706

• Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel Heinz: Interconnected Linguistic
Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

• Ralf Lämmel: Relationship Maintenance in Software Language Repositories. Art Sci. Eng. Program. 1(1): 4
(2017)

• Juri Di Rocco, Davide Di Ruscio, Marcel Heinz, Ludovico Iovino, Ralf Lämmel, Alfonso Pierantonio: Consistency
Recovery in Interactive Modeling. MODELS (Satellite Events) 2017: 116-122

• Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of Linguistic Architecture. MODELSWARD 2017:
478-486

• Ralf Lämmel: Coupled software transformations revisited. SLE 2016: 239-252

• Ralf Lämmel, Andrei Varanovich: Interpretation of Linguistic Architecture. ECMFA 2014: 67-82

• Ralf Lämmel, Vadim Zaytsev: Language Support for Megamodel Renarration. XM@MoDELS 2013: 36-45

• Jean-Marie Favre, Ralf Lämmel, Andrei Varanovich: Modeling the Linguistic Architecture of Software
Products. MoDELS 2012: 151-167

Papers on megamodeling

http://www.jot.fm/contents/issue_2020_02/article8.html
http://www.jot.fm/contents/issue_2020_02/article8.html
https://link.springer.com/article/10.1007/s10270-019-00748-7
https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126
https://programming-journal.org/2017/1/3/
https://programming-journal.org/2017/1/3/
https://programming-journal.org/2017/1/4/
http://ceur-ws.org/Vol-2019/exe_6.pdf
http://ceur-ws.org/Vol-2019/exe_6.pdf
http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/cxrevisited/
http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf
http://ceur-ws.org/Vol-1089/5.pdf
https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11
https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11

