Languages for Programming:
From Punched
Cards to Wise Computing

David Harel
The Weizmann Institute

Languages for programming
have to be endowed with
formal syntax and semantics,
which must unambiguously give
rise to their intended
functionality: full executability

First, a very brief history
of general programming
methods

~we used

punched tape and punched cards...

ime

Once upona t

Cn4n:
CHa4s8:
Cnsn:
CNns8:
Ccnen:
Cnes:
Ch70:
Cni7s:
Cngn:
Cnes:
Cnan:
Cnas:
CnOAf:
CNHAS8:
CnBO:
CnBs:
CEL 2
Cncs:
CnDn:
CNHD8:
COED:
CNHE8:
COF0:
COF8:
Cl00):
Clns:
Cll0:
Cl18:
Cl20:
C128-
C130):
C138:
Cl4an:
C148:-
Cl150:

cH
6F
F0n
FD
AA
9D
AE

C8
ne)
01
F0
C8
FA
B3
DO
FB
N8
c8
69
DO
FB
8D
Cl
8D
Cl
F8
AE
07
F8
Cl
NB
N6
DE
D)

4C
D0
D9
C8
A9
N1
83
8D
gD
BD
9D
60
C9
C8
Cl
FE
C8
A9
4C
Cl
DE
C8
FB
AD
FF
20
89
83
Cc9
07
AE
EE
Dn)
§10]
E7

2B
Ef0
EE
AE
BA
D)
Cl

75
CF
83
60
2
AD
BD
)
AD
ne
18
AA
fn
Co
C8
N1
07
84
AD
Bl
E6
60
2B
2B
EE
DO
AE

cn
AD
83
83
9D
A9
AD
DN
Cl1
Cé4
DA
EE
Dn)
FC
69
Dr
FB
8D
Cl
DE
DN
N6
8D
9D
AD
i |
21
FE
DO
N6

Cl
6n
BD
2B

AD
83
Cl
Cl
N
E3
15
A9
4C
9D
ES8
FA
F5
Cc8
Cl
FE
C8
FC
AE
N1
EE
DN
FD
7B
70
AD
89
F8
5
A9
BD
AD
BD
nn
Cl

nr
Cl
A9
BD
D)
8D
DO
N1
2B
83
EN
C8
A9
Ff)
AA
N
C9
C8
B3
DM
FB
2A
C8
Cl
Nns
20
8D
N7
A9
ne
7B
2B
69
Dn
AD

DC
C9
01
69
A9
FF
5D

cn
N6
21
AD
nn
25
DE
Dr)
N6
8D
C1
DE
C8
A9
AE
AQ
8D
89
F9
BD
E4
8D
cl
Cl
Cl
C9
15

C9
N5
8D
Cl
86
07
6F

A2
A9
DN
FA
8D
AE
N1l
EE
DO
FB
BD
N
AD
nr)
83
EN
81
8D
89
F8
9D
2B
DN
c9
AA
18
DN

8D
2B
87
FB
NE
F9
Cé4

F8
AB
49
AS
33
Ad
69
18
98
o)
.l
3E

22
C9
CA
D2
15
FB
&5 |
D9
F0)
59
83
F9
68
38

()
Machine language
. (1945)}

SMODB253
DSEG

Warl
STATE
QUTPIT

CEEG

START

Loor

INTERFUJFEFT

OFRG

EIT
BIT

ORG
ARJIME

DRz
AJMP

okl
MOy
MO
Mo
SETE
SETE

HOP
SJME

CLE
MOV
MOV
SETE
CPEL
MOV
HOW
RETI
EXND

20h

Varl.Q
BPl1.0

Oh
START

OBh
INTEERUOPT

IE, #82h
TMOD, #01
THO, #FEh
TL0O, §0Ch
STATE
TR0

Laoge

TR0

THO, #FEh
TLO, #0Ch
TRO
STATE

C, STATE
OUTFUT, C

Machine language

(1945)

Assembly language

(1950)

PlayerCantral {]
{

culer o Yector3:mGetZeraf);

Machine language

Tturnspeed = 18.8;
maxTurniean = 56.98; 1945
maxTilt = 39.8;

sensitivity = 18.9;
forwardforce = 1.8;

virtual poid Start {) { y 9 9
S Get an access to another script attached to the same GameDbject 1950
missilelauncher = GeiComponent=MissileLauncher=(};

virtual woid Update ()} {
for {int touchIndex = B; touchIndex « Input::GetTouchCouni(]); touch

Touch fouch = Input::GeiTouchi{touchIndex);

it {touch.phase == TouchPhase::Moved) High-|eve| pr'og. Iangs.

{
speed = touch.position.y / Screen::hsicht;
puiSpeedElement.position = Yeckord (8, speed, 8]; 1970

if (touch.phzase == TouchFhase::Ended)
{
missilelauncher—=Firel);

}

virtual void Fixedlpdate {) {
rigidbody.fiddRelativeForce(d, B8, speed % forwardForce);

Vectard accelerator = Input::;Getfcceleration(];

[itsTeell getCDE_R() ==

e Machine language

(1945)
sy

checkBgiAlne =

/’

[litsTecel.getCDE_E([==
falze) dd
[it=Tioell met T

trael
CDaTeell

checlviZo_

Assembly language
(1950)

o ke s oD

[itsToellgetDa_R[) =
nae] dde [itsToell zetdTod

'rfrepnrt ToEnginer

High-level prog. langs.
(1970)

[itsBpic oHl g

[el=e

4 [Modeling/graphical’
) langs.

L (1985),

Machine language
(1945)

Assembly language
(1950)

High-level prog. langs.
(1970)

And what after Modeling/graphical
langs.
that? 1955;

Let’s concentrate on developing
complex reactive systems

(ferm introduced with Pnueli 1985)

.. which interact heavily with
users or with other systems

Speedway to success

CUSTOMER,
ACCEPTS IT/

The actual development process

SPECIFICATION
GRIPLOCK,

Specification Gridlock: A Closer Look

Specification Gridlock: The root of the problem

Specifiers Behavior! Implementors

- interpret requirements - inferpret specification
- create specification - create hardware & software

1

Taken from a real spec!

Section 2.7.6: Security (~ page 10)
"If the system sends a signal hot then send a message
to the operator.”

Section 9.3.4: Temperatures (~ page 150)

"If the system sends a signal hot and T560°, then send
a message to the operator.”

Summary of critical aspects (~ page 650)

"When the temperature is maximum, the system should
display a message on the s¢reen unless no operator is on
the site except when T<60"."

Statecharts (1984) were invented, at
least in part, to help alleviate this
problem

Actually, we "program” all the
time, though not necessarily
computers...

And we use scenarios, examples,
implicit instructions, analogies,
constraints, etc.

The recent scenario-based
approach (1999 and on) brings
programming a lot closer to the
way humans prescribe and
describe behavior

Multi-modal: includes mandatory,
possible and forbidden behavior

A live sequence chart (LSC)

% K.ep SEMD Chip b emory @E}

__L___l___l___L_
/ -,_____I:ln;ls____;,. A
< = N [;j §)
_____ Cick .4 /
N,
HFtrieveN umberlf]

e o
Mum ;= Memary. Humber Il]
T T

main chart N E Send])
(Then) : ! E E E{} Receive[Signal)

<, Slgna_EEiLISH" =

Have several non-graphical
versions of this (e.g., Java, C++)

Approach called more generally
Scenario-Based (or Behavioral)
Programming

How to most naturally construct
LSCs?

I. Construct chart directly

IT. "Play in" behavior from realistic
graphical interface

ITI. Use Natural Language

Can start from scratch and go all the
way to a full executable

IV. Use "Show & Tell”
Combine NL with play-in

Commercial break

New EdX online course
Liberating Programming:
System Development for Everyone

But,..... wouldn't it be really nice if the
process of programming a computer could
be two-way, and the programing
environment would be endowed with
powerful human-like wisdom?

It would then become almost an
equal partner, helpful and
concerned, like human members of
the system development team

Indeed, humans can do a lot more...
(health care robot; credit: A. Marron)

= Notice irregularities, unexpected properties:

“The arm movement is not smooth!”
"Hear that strange noise when it turns”

= Detect missing requirements, assumptions:
"Will it understand the voice of a hoarse patient?”
"Can it process voice commands with the TV on?”

= Ask (& answer) hard "what if” and “"why"” questions:
"Will a loud command from the TV confuse it?”
"Why is it just walking around ? Is it looking for something?”
= Use broad knowledge and free association:
"Recently a pacemaker was remotely hacked. Can this happen here?”
= Exhibit creativity, unusual thinking (outside the box)

"Let's see what happens if I ask it to fetch something
that's glued to the table..”

We call such a futuristic
approach to programming
"Wise Computing”

It entails all that, and lots more...

arXiv, Jan 2015; and IEEE Computer, Feb 2018

From a tool to a proactive partner

A.

Current
Practices

/2204

| %
Wise i 133, VOS¢
Computing 4

Stakeholders Systems

Main Research Directions:
Formalization
Analysis

Interaction

= Commohn Formalism: Statecharts and LSCs at

its heart, but with much more, intended to capture
all relevant knowledge.

= Analysis Engine: proactive, uses heavy-duty
learning, verification, SMT solving, etc., mimics
human skills.

= Interaction Language & Engine: two way,
multiple abstraction levels, natural language,
captures all level of communication with human
Team.

Two demos of proof-of-concept

wise development suite
(mainly proactive analysis)

Concept and simple M
example: 12 min.

Cash coherence B
protocol: 18 min.

Main acks:

Amir Pnueli, Werner Damm, Rami Marelly,
Shahar Maoz, Assaf Marron, Smadar Szekely,
Gera Weiss, Michal Gordon, Guy Katz

Thank you for listening

Thank you for listening

