
David Harel
The Weizmann Institute

Languages for Programming:
From Punched

Cards to Wise Computing

Languages for programming
have to be endowed with

formal syntax and semantics,
which must unambiguously give

rise to their intended
functionality: full executability

brief history verya First,
of general programming

methods

Once upon a time, we used
punched tape and punched cards…

Machine language
(1945)

Assembly language
(1950)

High-level prog. langs.
(1970)

Graphical langs.
(1985)

And what now?

Machine language
(1945)

Assembly language
(1950)

High-level prog. langs.
(1970)

Graphical langs.
(1985)

And what now?

Machine language
(1945)

Assembly language
(1950)

High-level prog. langs.
(1970)

Graphical langs.
(1985)

And what now?

Machine language
(1945)

Assembly language
(1950)

High-level prog. langs.
(1970)

Modeling/graphical
langs.
(1985)

And what now?

And what after
that?

Machine language
(1945)

Assembly language
(1950)

High-level prog. langs.
(1970)

Modeling/graphical
langs.
(1985)

Let’s concentrate on developing
complex reactive systems
(term introduced with Pnueli 1985)

… which interact heavily with
users or with other systems

Speedway to success

The actual development process

Specification Gridlock: A Closer Look

Specification Gridlock: The root of the problem

Specifiers
- interpret requirements
- create specification

Implementors
- interpret specification
- create hardware & software

! ! !

Behavior!

Section 2.7.6: Security (~ page 10)
“If the system sends a signal hot then send a message

to the operator.”

Taken from a real spec!

Summary of critical aspects (~ page 650)
“When the temperature is maximum, the system should

display a message on the screen unless no operator is on
the site except when T<600.”

Section 9.3.4: Temperatures (~ page 150)
“If the system sends a signal hot and T>600, then send

a message to the operator.”

at were invented,) 1984(Statecharts
least in part, to help alleviate this

problem

we “program” all the Actually,
though not necessarily time,

…computers

examples, And we use scenarios,
analogies, implicit instructions,

etc.constraints,

based-scenarioThe recent
approach (1999 and on) brings

programming a lot closer to the
way humans prescribe and

describe behavior

includes mandatory, :modal-Multi
possible and forbidden behavior

A live sequence chart (LSC)

prechart
(if)

main chart
(then)

Have several non-graphical
versions of this (e.g., Java, C++)

Approach called more generally
Scenario-Based (or Behavioral)

Programming

How to most naturally construct
LSCs?

I. Construct chart directly

II. “Play in” behavior from realistic
graphical interface

III. Use Natural Language
Can start from scratch and go all the

way to a full executable

IV. Use “Show & Tell”
Combine NL with play-in

Commercial break

New EdX online course
Liberating Programming:

System Development for Everyone

It would then become almost an
equal partner, helpful and

concerned, like human members of
the system development team

But,….. wouldn’t it be really nice if the
process of programming a computer could

be two-way, and the programing
environment would be endowed with

powerful human-like wisdom?

Indeed, humans can do a lot more…
(health care robot; credit: A. Marron)

Notice irregularities, unexpected properties:
“The arm movement is not smooth!”
“Hear that strange noise when it turns”

Detect missing requirements, assumptions:
“Will it understand the voice of a hoarse patient?”
“Can it process voice commands with the TV on?”

Ask (& answer) hard “what if” and “why” questions:
“Will a loud command from the TV confuse it?”
“Why is it just walking around ? Is it looking for something?”

Use broad knowledge and free association:
“Recently a pacemaker was remotely hacked. Can this happen here?”

Exhibit creativity, unusual thinking (outside the box)
“Let’s see what happens if I ask it to fetch something

that’s glued to the table…”

We call such a futuristic
approach to programming

“Wise Computing”

It entails all that, and lots more…

arXiv, Jan 2015; and IEEE Computer, Feb 2018

From a tool to a proactive partner

Main Research Directions:

Formalization

Analysis

Interaction

Common Formalism: Statecharts and LSCs at
its heart, but with much more, intended to capture
all relevant knowledge.

Analysis Engine: proactive, uses heavy-duty
learning, verification, SMT solving, etc., mimics
human skills.

Interaction Language & Engine: two way,
multiple abstraction levels, natural language,
captures all level of communication with human
team.

Two demos of proof-of-concept
wise development suite
(mainly proactive analysis)

Concept and simple
example: 12 min.

Cash coherence
protocol: 18 min.

: Main acks
Amir Pnueli, Werner Damm, Rami Marelly,

Shahar Maoz, Assaf Marron, Smadar Szekely,
Gera Weiss, Michal Gordon, Guy Katz

Thank you for listening

Thank you for listening

