Contracts:
Model-centric
Assumption Promise
System Specification

Manfred Broy

TECHNISCHE UNIVERSITAT m 3331 g B EIEEITT PE.:T'-«’:EH .
MUNCHEN S JIGITALISIERUNG,
INSTITUT FUR INFORMATIK g g 5 L |J r BAYERN

A System and its Operational Context

operational
i HM| context

Cyberspace
Services
&

Data

Modelsward Rome February 2016 Manfred Broy TUM | 2

Operational Context (OPE

‘ | Physical
and

technical
context

User Interface

System under Consideration (SYS)

ASU A PRO = IAS

Operational Context (ASU)
— Assumptions for the
requirements specification

Interaction Observations (IAS)
Properties for the observations
in the requirements
specification

— System (PRO)

Properties promised in the
system specification

Modelsward Rome February 2016 Manfred Broy TUM | 3

Requirements Specification: Modeling SYS, OPC, OBS

* formulating system properties — system promises PRO

* formulating properties of the operational context — context
assumptions ASU

* formulating properties of the interaction between the system
and its operational context — interaction assertions IAS

ASU A PRO = IAS

* This leads to assumption/promise specification formats

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

Discrete systems: the system modeling theory

Sets of typed channels

I=4{x:Ty, X2: Ty . } Tl THVT

O = {Y1 : T,].I Yo . T’zl } % T, System v, T,
syntactic interface T,

(L >0) T
data stream of type T Va ! T’4\ [XS LT,

STREAM[T] = {IN\{0} — T*}
valuation of channel set C

[C] = {C — STREAMI[T]}
interface behaviour for syn. interface (I » O)

[T » O] =A{[1]1 — »([OD}

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

Example: System interface specification

X : Qst y : Asw

A question answering component
Every question

QAC gets answered!
in X Qst
out y: Asw Qst : set of questions
V q € Qst: g#x = A[qJ#y Asw : set of answers
A[q] : set of possible

answers for question g

q+q = A[q]NA[q] = &

Modelsward Rome February 2016 Manfred Broy TUM | 6

Verification: Proving properties about specified systems

From the interface assertions we can prove
* Safety properties

acy Ay € QAC(x) = 3 g Qst: ge=x A a € A[q]
* Liveness properties

gex Ay € QAC(x) = da € Asw: acy A a € A[q]

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

Example: Context interface specification

y : Asw X : Qst

A context interface specification

CIS
iIn y: Asw
out x: Qst
Vte Time:

Qst#(x | t)+1 < Asw#(y 1)

Never ask a further question before your recent one is
answered

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

Specification of Timing Properties

Example: QAC with Timing .
Restrictions X:Qst

QAC
in x:Qst
out y: Asw

VtEIN: VY q&Qst:
Alql#(y | t+delay)

< gq#(x| 1)

< A[q]#(y | t+delay+deadline)

Modelsward Rome February 2016 Manfred Broy TUM | 9

Universal Properties of System (Interfaces)

L b

TECHNISCHE UNIVERSITAT m 3331 g B EIEUTT PE.:T'-«":EH .
MUNCHEN JIGITALISIERUNG,
INSTITUT FUR INFORMATIK % g L D r BAYERN

-

System interface behaviour - causality

(1 » O) syntactic interface with set of
input channels | and of output channels O

Fell »O] semantic interface for (I » O)
with timing property addressing strong causality

(letx, z€[l], y € [O], t € N):

x|t prefix of history x of length t

| to

Component interface

Modelsward Rome February 2016 Manfred Broy T|_|T| | 11

Verification: adding/exploiting causality

From the interface assertions we can derive properties!
Specification:

y € QAC(X) = (V g € Qst: g#x = A[q]#Y)
Strong causality: V t € Time:

X{t=z|t={y|t+1: y € QAC(X)} = {y|t+1: y € QAC(2)}
From which by choosing z such that
#(z1t) =0
we can deduce (note then g#x |t = q#2z)
y € QAC(X) = V q € Qst: A[q]#(y|t+1) < g#(x|1)

No answers before questions!

Modelsward Rome February 2016 Manfred Broy T|_|T| | 12

Causal deterministic behaviors

* A total function f: [I] — [O] s called causal (and strongly
causal, respectively) if behaviour

Fe [I»0] with F(x) = {f(x)}
is causal (or strongly causal, respectively) for all x € [I]

* A nondeterministic behaviour F defines the set [F] of total
deterministic behaviours.

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

13

Realizability

An interface behaviour F is called (strongly) realizable if there
exists a (strongly) causal “deterministic” function f: [I] — [O]
such that

V x € [I]: f(x) € F(x)
f is called (strong) realization of F.

Theorem

An interface behaviour F is (strongly) realizable if there exists a
(Moore) Mealy machine that calculates F.

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

14

Example: Non-realizable Behaviour

Consider the behaviour F &€ [I» O] :

F(x) ={y €[0] : x # y}
F is strongly causal but not realizable.

Proof: Strong causality is obvious.
If F were realizable f € [F] exists with

V xe[I]: f(x) € F(x)
Since f is strongly causal there exists a fixpoint z with z = f(z2).
By f € [F] we get by y = f(x) the proposition y € F(x) and by the
specification x # y and thus for the fixpoint z the conclusion z €
F(z) which yields z # z and thus a contradiction.

Modelsward Rome February 2016 Manfred Broy T|_|T| | 15

Healthiness Conditions for System Specifications

Accordingly, for an interface assertion spc(x, y) the following
healthiness conditions are required:

Systems does react not
earlier as in the next time

Existential satisfiability: V x: 3 y: spc(x, y) interval

Strong causality
in input Xx:

Realizability:

Full realizability:

VX, x:Vtx|t=x|t=
V y:spc(x, y|t+1) = spc(x’, y|t+1)

dfelf [I»0]: V x: spc(x, f(x))

V X, y: spc(x, y) = 3 f e If_[I»O]:
y = f(x) A V X": spc(x’, f(x"))

Modelsward Rome February 2016

Manfred Broy T|_|T| | 16

Modeling

Operational Context

OC

v Lo

SoC

System under Consideration

We model

« context behavior by (weakly)
causal behaviors assuming
that contexts may react
instantaneously — reaction
within one time interval

« system by strong causal
behavior — reaction requires
at least one step in time

Consequence:

Unique fixpoints for realizations
of the context and the system
specs

Modelsward Rome February 2016

Manfred Broy T|_|T| | 17

Healthiness Conditions for System Context Specifications

Accordingly, for an interface assertion asu(x, y) of the context
the following healthiness conditions are required:

Context may react
immediately in the
current time interval

Weak causality Vy,y:Vtylt=y|t=

in input Xx: V y:asu(x|t, y) = asu(x|t, y")
Realizability: dg e If [O»I]: V y: asu(g(y), y)
Full realizability: V X, y:asu(x, y) =3geIf [O»I]:

X =g(y) A Yy asu(g(y’), y)

Modelsward Rome February 2016 Manfred Broy T|_|T| | 18

Modularity: Rules of compositions for interface specs

x1
FI®F2 212 y2
S| F1 [7°] F2 , We do npt need
assumptions to
y1 s1 | z21] s2 x2 achieve
< <+ < modularity!
F1 F2
in x1,z21: T in x2,z12: T
out yl,z12: T out y2,721: T
S1 S2
F1®F2 S1 4 S2
in x1,x2:7T is called the
out yl,y2: T interaction
d42z12,2z21: S1 A S2 assertion
Modelsward Rome February 2016 Manfred Broy TUM | 19

Qsts and answers

System

X : Qst y : Asw

Context
X : Qst

y : Asw

Interaction assertion:
Vte Time: Qst#(x|t)+1 < Asw#(y|t)
AV q € Qst: g#x = A[q]#y

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

20

Assumption/Promise (A/P) Specifications

Operational Context

OC
v U &
SoC
assume: asu(x, y)
promise;: pro(X, y)

System under Consideration

Assumption: asu(X, y)

The properties that we assume
about the interface behavior of
a context

Promise: pro(X, y)

The properties that are
guaranteed about the interface
behavior of the system

Resulting system spec:
asu(x, y) = pro(x, y)

Modelsward Rome February 2016

Manfred Broy T|_|T| | 21

Example: Assumption promise system interface specification

A contract for aquestion answering component

APQAC

X : Qst

in x: Qst
out y: Asw

assumption

promise
Y q € Qst: g#x = A[q]#y

Vtite Time: Qst#(x|1)+1 < Asw#(y|t)

y : Asw

Every question gets
answered

as long as the next
guestion is
answered only after
all questions have
been answered!

Modelsward Rome February 2016

Manfred Broy

Tm | 22

What is a good
(a “healthy”) assumption?

Modelsward Rome February 2016

Manfred Broy

Tm |

23

Why Assumptions are Constraint by Output Histories

* In the general case, assumptions refer to output of the
system.

The reason is that if a system is nondeterministic and the question which
input x fulfils the assumption may depend on the actual output y
produced so far.

* Example: our QAS
asu(x, y) =Vte Time: Qst#(x|t)+1 < Asw#(y|t)
pro(x, y) = V q € Qst: g#x = A[q]#Y

We obtain the specification in terms of an interface assertion
con(X, y) = [asu(X, y) = pro(X, y)]

The assumption is fulfilled

¢ if a question is never sent as input to the system

¢ before the answer to the previously question has been returned by the
system as output.

Modelsward Rome February 2016 Manfred Broy T|_|T| | 24

What makes an Interface Assertion a Healthy Assumption

* Assumptions should only constrain properties of the context.

¢ In the case of simple assumptions that only refer to the input histories
x € [I] for systems with systematic interface (O »1) this is obvious.

* However, what does it mean that asu only constraints the
input histories for general assumptions.

asu: [I] x[O] — IB

Modelsward Rome February 2016 Manfred Broy T|_|T| | 25

Healthiness Conditions for Context Specifications

Causality in input vy: Vy, yv:iVt:ylt=Yy|t=

V x: asu(x|t, y) = asu(x’'|t, y)

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

26

Example: Implicative Assertions

Consider a system with one input channel x and one output
channel y, both carrying natural numbers as messages.

Let n be a given natural number. Is n#y = 0 a healthy
A specification in implicative form: assumption about the
con(x, y) = [n#y = 0 = n#x = 0] context

Clearly, there does not exist a context that can guarantee the
premise n#y = 0, since the output is exclusively determined by
the system.

Modelsward Rome February 2016 Manfred Broy T|_|T| | 27

Example: Implicative Assertions

The A/P—specification
assume: n#y =0
promise: n#x = 0

is not healthy, since

¢ the assumption does not constrain the input histories but the output.

¢ The promise n#y = 0 is not healthy as an assumption, since it does not
express properties of input stream x but only of output stream v.

The assertion n#y = 0 is not causal in history y, since causality in
y would require for all t € IN

vit=y|t=V X: (n#y =0) = (n#y' = 0)
which does not hold.

Assertion n#y = 0 is therefore not a healthy assumption, since it
IS not causal in y and thus not realizable by any context.

Modelsward Rome February 2016 Manfred Broy T|_|T| | 28

Example: Implicative Assertions

In the assertion (which is equivalent to assertion con(x, y) by
contraposition)

con(x, y) = [n#Xx > 0 = n#y > 0]

the assertion n#x > 0 is causal in history y since the formula
vit=vy|t=V x: (n#x|t > 0) = (n#x|t > 0)

holds. It is furthermore trivially realizable.

This interface assertion may therefore be rewritten in the A/P-
format of a contract

assume: n#x > 0
promise: n#y >0
with a healthy assumption.
Conclusion: Not every assertion is a healthy assumption.

Modelsward Rome February 2016 Manfred Broy T|_|T| | 29

From Interaction Assertions to
Assumptions and Promises

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

30

Modelsward Rome February 2016

Operational Context (OPE

¢ | |

Given IAS, can we derive
ASU and PRO?

ecnnica
I context
4

User Interface ‘
A
A

System under Consideration (SYS)

ASU A PRO = IAS

Operational Context (ASU)
—— Assumptions for the
requirements specification

Interaction Assertion (IAS)
Properties for the observations
in the requirements
specification

— System (PRO)

Properties captured in the
system specification

Manfred Broy T|_|T| | 31

Notation

Throughout the presentation we use the following notation:
Given a predicate

p: [C] — IB

we extend for every time t € IN the predicate p also to finite
histories x of length t:

p(x) =3ax €:x=x"|tap(x)

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

32

From Interaction Assertions to Contracts

X
E S
Let the interaction assertion y
ias: [I] x [O] — IB <+

be given

ias(x, y) is an assertion characterizing the interaction between
the system S and its context E in terms of the histories x and .

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

Questions and answers

System

X : Qst y : Asw

Context

X : Qst y . Asw

Vte Time: Qst#(x|t)+1 < Asw#(y|t)
AV q € Qst: g#x = A[q]#y

Modelsward Rome February 2016 Manfred Broy T|.|T| |

34

Deriving specs from interaction assertion

Can we derive from the interaction assertion:

Vte Time: Qst#(x|t)+1 < Asw#(y|t)
AV q € Qst: g#x = A[q]#y

the contract in terms of assumptions and promises for

X : Qst y . Asw

X : Qsts

y : ASws

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

35

From Interaction Assertions to Contracts

Given an interaction assertion ias(x, y) we derive an A/P-
specification for system S with the weakest assumption by the
following steps:

(1) Separate ias into a safety and a liveness part

(2) Separate the safety part of ias canonically into an
assumption and a promise for system S

(3) Separate the liveness part of ias into an assumption and a
promise for system S

(4) Construct a contact being the A/P-specification of S from the
liveness and safety parts of the assumption and the promise.

S
X

Ty

ias(x, y)

Modelsward Rome February 2016 Manfred Broy T|_|T| | 36

From Interaction Assertions to Contracts: Safety

Deriving asu(x, y) and pro(X, y) from ias such that:
asu(x, y) a pro(x, y): ias(X, y)
-asu(x, y): JdteIN:ias(x|t, y|t+1) A —ias(x|t+1, y|t+1)

-pro(x, y): 3Ite&IN:ias(x|t, y|t) aA-ias(x|t, y|t+1)

Modelsward Rome February 2016 Manfred Broy T|_|T| | 37

From Interaction Assertions to Contracts: Safety

Derive promise pro and a assumption asu from property ias

asu(x, y) = [ias(x, y|0)
A (V t:ias(x|t, yt+1) = ias(x|t+1, y|t+1))]

pro(x, y) = (V t: ias(x|t, y|t) = ias(x|t, y|t+1))

To eliminate partiality according to the input restriction in
assertion ias(Xx, y) derive from interaction assertion ias(x, y) the
weaker interface assertion con(x, y) specified by contract

con(x, y) = [asu(x, y) = pro(X, y)]
An easy proof shows that con(x, y) is strongly causal.

Modelsward Rome February 2016 Manfred Broy T|.|T| | 38

From Interaction Assertions to Contracts: Safety

Note that according to our initial assumption interaction assertion
ias(x, y) includes only safety properties.

Theorem:
With the definitions as given above we obtain under the
condition that assertion ias(Xx, y) is a pure safety property

(asu(x, y) A pro(x, y)) < ias(x, y)

Modelsward Rome February 2016 Manfred Broy T|.|T| | 39

From Interaction Assertions to Contracts: Liveness

If ias(x, y) includes nontrivial liveness conditions the separation
into assumptions and promises of ias(x, y) is less canonical than
for safety, in general.

* Some liveness conditions definitely formulate properties
specifically about input histories x or histories y about output.

* There are liveness conditions that can not be canonically
separated into assumptions and promises.

* Example: the assertion
{1}#x + {0}#y =
can either be fulfilled by assuming an infinite number of copies

of 1 in input history x or by promising an infinite number of
copies of 0 in output history vy.

Modelsward Rome February 2016 Manfred Broy T|_|T| | 40

From Interaction Assertions to Contracts: Liveness

Given an interaction assertion

ias(X, y)
that is a pure liveness condition we define an assumption asu,_.
as follows

asu...(x) = 3 y:ias(x, y)
and a promise pro,.. by the equation

Pro,,s(x, y) = ias(x, y)
Those parts of the liveness property ias that can either be
fulfilled by the context or by the system under consideration are
made part of the promise.

¢ This way we get the weakest assumption and the strongest promise for
liveness properties of ias.

Modelsward Rome February 2016 Manfred Broy T|_|T| | 41

Deriving specs from interaction assertion

We derive from the interaction assertion:

Vte Time: Qst#(x|t)+1 < Asw#(y|t)
AV q € Qst: g#x = A[q]#y

the specs for

X : Qst y : Asw

X : Qsts

y : ASws

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

42

Deriving specs from interaction assertion

We derive from the interaction assertion:

Vte Time: Qst#(x|t)+1 < Asw#(y|t)
A Y g € Qst: g#x = A[q]#yY

the specs for the system interface and the context:
Safety property in x and y
VteTime: Qst#(x|t)+1 < Asw#(y|t)

is clearly an assumption.
The property

V q € Qst: g#x = A[q]#y
is composed of a system safety property (by causality)

VteTime: V qe Qst: g#x|t = A[q]#y|t+1

that is clearly a promise and liveness property

V q € Qst: g#x < A[q]#y
that is turned into a promise.

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

43

Service Layers and Service Stacks
Assumed and Promised Services

TECHNISCHE UNIVERSITAT m 3331 g B EIEEITT PE.:T'-«’:EH .
MUNCHEN JIGITALISIERUNG,
INSTITUT FUR INFORMATIK g g L |J r BAYERN

-

Service Layers

A service layer is a service I i
with syntactic interface (IUO" » I'UQO)

To

structured into an
promised (“exported™) service (I»0)

Service layer

assumed (“imported”) service (I'»QO"). I i

WeassumeINO' =Jand O NI = .

[o

A service layer is a service with the interface behavior

L € [IUO’ » T'UO]

where both input and output actions are disjoint sets.

Modelsward Rome February 2016 Manfred Broy

m | 45

Service Layers

We denote the syntactic interface
of a service layer by

(I»O/O'»I') syntactic service layer interface

The service layer is a service
Le [TUO»OUT]

'

To

Service layer

Iw

[o

Modelsward Rome February 2016

Manfred Broy

Tm |

46

Specifying Service Layers

To specify a service layer we specify two services i T o
The promised service Fe[I»0] EE———
The assumed service Re[I'»0]

pi TO.

A layer provides the service F under the condition that it gets the
service R from “below”.

Note that

¢ R does not specify the service of the layer as promised by L but the
assumed service.

Given F and R we denote the layer L that offers service F
provided service R is offered as an auxiliary service by

F//R

Modelsward Rome February 2016 Manfred Broy T|_|T| | 47

Specifying Service Layers

Layer
L =F//R
is specified as follows (for x € [IUQ’]

L(x) = {y € [T'UO]: x|]O" € R(y|I') = y|O € F(x]|I) }

This expresses that

* if the service assumed from “below” is correct as required and
specified by R than the offered service is as promised by F.

* Note that this specification is written in the pattern of an
assumption/promise specification.

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

48

Composing Layers with Services

Given a service R' as requested from below 1 i T O

R'e[I'»0O'] imported service

Service Layer L.

and a service layer I i T O

Service interface F'

L € [I[»0/0'»I']

where L =F//R
with given F € [I»O] and R € [T'»0O’]
We get the composition of layer L with service R’
L®R" € [I»0O] composition of layer L with service R’

Modelsward Rome February 2016 Manfred Broy T|_|T| | 49

Service Refinement

Given services

F, F' e [I»0]

F' is called a refinement of F iff

then we write

V x € [1]: F'(xX) C F(x)

F > F

Modelsward Rome February 2016

Manfred Broy

m |

50

Composing Layers with Services

L®R" € [I»0] is a refinement of the provided service F € [I»0O]
F - L®R’

provided service R’ is a refinement of the requested service R
R»R’

Given layer L = F//R we get the following proof rule for layered

architectures

L=F/RAR>»R
=

F~ L®R

Modelsward Rome February 2016 Manfred Broy T|_|T| | 51

Composing Layers

Given two layers

Ii To

L E [I’O/C)"I'], |_| E [I'>O'/O">I"] Service Layer L
where we assume that INI" = @ and ONO" = J;

. gy I o'
we define the layer composition i T

L®L' € [I»0/0"»1"]
yielding a layer in [I»O/O"»I1"].

Service Layer L'

t i T o

Assume service L and L are described as follows

L =F//R
L' = F//R’

We call these two layers fitting if
R»F

then we conclude F//R" > L®L'

proof rule for layered architectures

L=F//RAaL'=F//R"AR>»F
=

F//R"~ L®L’

Modelsward Rome February 2016

Manfred Broy T|_|T| | 52

Assumption/Promise Contracts at several levels

* Assumptions about input
¢ What are healthy assumptions?

* Assumptions about the behavior of the operational context

¢ What are generic properties of the operational context (what is the
model of context behavior)?

* Decomposing interactions into assumptions and system
properties

* Assumptions in architectures

¢ Show that validity of assumptions of the system guarantee all
assumptions of components of the system the system!

* Assumptions about required services
¢ Specifying and composing service layers!

Modelsward Rome February 2016 Manfred Broy TI.I'I1 |

