
Technische Universität
München

Institut für Informatik !

Contracts:

Model-centric
Assumption Promise
System Specification

 Manfred Broy

 Manfred Broy 2 Modelsward Rome February 2016

A System and its Operational Context

 Manfred Broy 3 Modelsward Rome February 2016

Process

Operational Context (OPC)

User Interface

Physical
and

technical
context

System under Consideration (SYS)

Interaction Observations (IAS)
Properties for the observations
in the requirements
specification

Operational Context (ASU)
Assumptions for the
requirements specification

System (PRO)
Properties promised in the
system specification

ASU ˄ PRO ⇒ IAS

 Manfred Broy 4 Modelsward Rome February 2016

Requirements Specification: Modeling SYS, OPC, OBS

•  formulating system properties – system promises PRO
•  formulating properties of the operational context – context

assumptions ASU
•  formulating properties of the interaction between the system

and its operational context – interaction assertions IAS

ASU ˄ PRO ⇒ IAS

•  This leads to assumption/promise specification formats

 Manfred Broy 5 Modelsward Rome February 2016

Discrete systems: the system modeling theory

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface

(I ! O)

data stream of type T

STREAM[T] = {IN\{0} → T*}

valuation of channel set C

[C] = {C → STREAM[T]}

interface behaviour for syn. interface (I ! O)

[I ! O] = {[I] → ℘([O])}

System x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

 Manfred Broy 6 Modelsward Rome February 2016

Example: System interface specification

A question answering component

QAC
 in x: Qst
 out y: Asw
∀ q ∈ Qst: q#x = A[q]#y

QAC x : Qst y : Asw

Every question
gets answered!

Qst : set of questions
Asw : set of answers

A[q] : set of possible
answers for question q

q ≠ q’ ⇒ A[q]∩A[q’] = ∅

 Manfred Broy 7 Modelsward Rome February 2016

Verification: Proving properties about specified systems

From the interface assertions we can prove

•  Safety properties

a∈y ∧ y ∈ QAC(x) ⇒ ∃ q ∈ Qst: q∈x ∧ a ∈ A[q]

•  Liveness properties

q∈x ∧ y ∈ QAC(x) ⇒ ∃ a ∈ Asw: a∈y ∧ a ∈ A[q]

 Manfred Broy 8 Modelsward Rome February 2016

Example: Context interface specification

A context interface specification

CIS
 in y: Asw
 out x: Qst
 ∀ t ∈ Time:
 Qst#(x↓t)+1 ≤ Asw#(y↓t)

CIS y : Asw x : Qst

Never ask a further question before your recent one is
answered

 Manfred Broy 9 Modelsward Rome February 2016

Specification of Timing Properties

QAC
 in x: Qst
 out y: Asw
∀ t ∈ IN: ∀ q ∈ Qst:
 A[q]#(y↓t+delay)
≤ q#(x↓t)
≤ A[q]#(y↓t+delay+deadline)

QAC x:Qst y:Asw Example: QAC with Timing
Restrictions

Technische Universität
München

Institut für Informatik !

Universal Properties of System (Interfaces)

 Manfred Broy 11 Modelsward Rome February 2016

I O

Component interface

System interface behaviour - causality

 (I ! O) syntactic interface with set of
 input channels I and of output channels O

 F ∈ [I !O] semantic interface for (I ! O)
 with timing property addressing strong causality
 (let x, z ∈ [I], y ∈ [O], t ∈ IN):

x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)}

 x↓t prefix of history x of length t

 Manfred Broy 12 Modelsward Rome February 2016

Verification: adding/exploiting causality

From the interface assertions we can derive properties!
Specification:

y ∈ QAC(x) ⇒ (∀ q ∈ Qst: q#x = A[q]#y)
Strong causality: ∀ t ∈ Time:

x↓t = z↓t ⇒ {y↓t+1: y ∈ QAC(x)} = {y↓t+1: y ∈ QAC(z)}
From which by choosing z such that

#(z↑t) = 0
we can deduce (note then q#x↓t = q#z)

y ∈ QAC(x) ⇒ ∀ q ∈ Qst: A[q]#(y↓t+1) ≤ q#(x↓t)

No answers before questions!

 Manfred Broy 13 Modelsward Rome February 2016

Causal deterministic behaviors

•  A total function f: [I] → [O] is called causal (and strongly
causal, respectively) if behaviour

F ∈ [I�O] with F(x) = {f(x)}
is causal (or strongly causal, respectively) for all x ∈ [I]

•  A nondeterministic behaviour F defines the set [F] of total
deterministic behaviours.

 Manfred Broy 14 Modelsward Rome February 2016

Realizability

An interface behaviour F is called (strongly) realizable if there
exists a (strongly) causal “deterministic” function f: [I] → [O]
such that

 ∀ x ∈ [I] : f(x) ∈ F(x)
f is called (strong) realization of F.

Theorem
An interface behaviour F is (strongly) realizable if there exists a
(Moore) Mealy machine that calculates F.

 Manfred Broy 15 Modelsward Rome February 2016

Example: Non-realizable Behaviour

Consider the behaviour F ∈ [I�O] :
 F(x) = {y ∈ [O] : x ≠ y}

F is strongly causal but not realizable.

Proof: Strong causality is obvious.
If F were realizable f ∈ [F] exists with

 ∀ x ∈ [I] : f(x) ∈ F(x)
Since f is strongly causal there exists a fixpoint z with z = f(z).
By f ∈ [F] we get by y = f(x) the proposition y ∈ F(x) and by the
specification x ≠ y and thus for the fixpoint z the conclusion z ∈
F(z) which yields z ≠ z and thus a contradiction.

 Manfred Broy 16 Modelsward Rome February 2016

Healthiness Conditions for System Specifications

Accordingly, for an interface assertion spc(x, y) the following
healthiness conditions are required:

Existential satisfiability: ∀ x: ∃ y: spc(x, y)

Strong causality ∀ x, x’: ∀ t: x↓t = x’↓t ⇒
in input x: ∀ y: spc(x, y↓t+1) = spc(x’, y↓t+1)

Realizability: ∃ f ∈ Ifsc[I�O]: ∀ x: spc(x, f(x))

Full realizability: ∀ x, y: spc(x, y) ⇒ ∃ f ∈ Ifsc[I�O]:

y = f(x) ∧ ∀ x’: spc(x’, f(x’))

Systems does react not
earlier as in the next time
interval

 Manfred Broy 17 Modelsward Rome February 2016

Operational Context

System under Consideration

SoC

OC

Modeling

We model
•  context behavior by (weakly)

causal behaviors assuming
that contexts may react
instantaneously – reaction
within one time interval

•  system by strong causal
behavior – reaction requires
at least one step in time

Consequence:
Unique fixpoints for realizations
of the context and the system
specs

x y

 Manfred Broy 18 Modelsward Rome February 2016

Healthiness Conditions for System Context Specifications

Accordingly, for an interface assertion asu(x, y) of the context
the following healthiness conditions are required:

Existential satisfiability: ∀ y: ∃ x: asu(x, y)

Weak causality ∀ y, y’: ∀ t: y↓t = y’↓t ⇒
in input x: ∀ y: asu(x↓t, y) = asu(x↓t, y’)

Realizability: ∃ g ∈ Ifc[O�I]: ∀ y: asu(g(y), y)

Full realizability: ∀ x, y: asu(x, y) ⇒ ∃ g ∈ Ifc[O�I]:

x = g(y) ∧ ∀ y’: asu(g(y’), y’)

Context may react
immediately in the
current time interval

 Manfred Broy 19 Modelsward Rome February 2016

Modularity: Rules of compositions for interface specs

F1
 in x1, z21: T
 out y1, z12: T
 S1

F2
 in x2, z12: T
 out y2, z21: T
 S2

F1⊗F2

x2

y2 z12

z21 y1

x1
F1

S1

F2

S2

F1⊗F2
 in x1, x2: T
 out y1, y2: T

F1⊗F2
 in x1, x2: T
 out y1, y2: T
∃ z12, z21: S1 ∧ S2

S1 ∧ S2
is called the
interaction
assertion

We do not need
assumptions to
achieve
modularity!

 Manfred Broy 20 Modelsward Rome February 2016

Context

System

Qsts and answers

QAC
∀ t ∈ Time:

Qst#(x↓t)+1 ≤
Asw#(y↓t)

x : Qst y : Asw

CIS
∀ q ∈ Qst:

q#x = A[q]#y

y : Asw x : Qst

Interaction assertion:
 ∀ t ∈ Time: Qst#(x↓t)+1 ≤ Asw#(y↓t)
∧ ∀ q ∈ Qst: q#x = A[q]#y

 Manfred Broy 21 Modelsward Rome February 2016

Operational Context

System under Consideration

SoC

OC

Assumption/Promise (A/P) Specifications

Assumption: asu(x, y)
The properties that we assume
about the interface behavior of
a context

Promise: pro(x, y)
The properties that are
guaranteed about the interface
behavior of the system

Resulting system spec:
asu(x, y) ⇒ pro(x, y)

x y

assume: asu(x, y)
promise: pro(x, y)

 Manfred Broy 22 Modelsward Rome February 2016

Example: Assumption promise system interface specification

A contract for aquestion answering component

APQAC
 in x: Qst
 out y: Asw
assumption
∀ t ∈ Time: Qst#(x↓t)+1 ≤ Asw#(y↓t)
 promise
∀ q ∈ Qst: q#x = A[q]#y

APQAC x : Qst y : Asw

Every question gets
answered
-
as long as the next
question is
answered only after
all questions have
been answered!

 Manfred Broy 23 Modelsward Rome February 2016

What is a good
(a “healthy”) assumption?

 Manfred Broy 24 Modelsward Rome February 2016

Why Assumptions are Constraint by Output Histories

•  In the general case, assumptions refer to output of the
system.
The reason is that if a system is nondeterministic and the question which
input x fulfils the assumption may depend on the actual output y
produced so far.

•  Example: our QAS
 asu(x, y) ≡ ∀ t ∈ Time: Qst#(x↓t)+1 ≤ Asw#(y↓t)
 pro(x, y) ≡ ∀ q ∈ Qst: q#x = A[q]#y

We obtain the specification in terms of an interface assertion
 con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)]

The assumption is fulfilled
◊  if a question is never sent as input to the system
◊  before the answer to the previously question has been returned by the

system as output.

 Manfred Broy 25 Modelsward Rome February 2016

What makes an Interface Assertion a Healthy Assumption

•  Assumptions should only constrain properties of the context.
◊  In the case of simple assumptions that only refer to the input histories

x ∈ [I] for systems with systematic interface (O�I) this is obvious.

•  However, what does it mean that asu only constraints the
input histories for general assumptions.

 asu : [I] × [O] → IB

 Manfred Broy 26 Modelsward Rome February 2016

Healthiness Conditions for Context Specifications

Accordingly, for an interface assertion asu(x, y) the following
healthiness conditions are required:

Existential satisfiability: ∀ y: ∃ x: asu(x, y)

Causality in input y: ∀ y, y’: ∀ t : y↓t = y’↓t ⇒

 ∀ x: asu(x↓t, y) = asu(x’↓t, y)

Realizability: ∃ g ∈ Ifc[O�I]: ∀ x: asu(g(y), y)

Full realizability: ∀ x, y: asu(x, y) ⇒ ∃ g ∈ Ifc[O�I]:

x = g(y) ∧ ∀ y’: asu(g(y’), y’)

 Manfred Broy 27 Modelsward Rome February 2016

Example: Implicative Assertions

Consider a system with one input channel x and one output
channel y, both carrying natural numbers as messages.
Let n be a given natural number.
A specification in implicative form:

 con(x, y) ≡ [n#y = 0 ⇒ n#x = 0]

Clearly, there does not exist a context that can guarantee the
premise n#y = 0, since the output is exclusively determined by
the system.

Is n#y = 0 a healthy
assumption about the
context

 Manfred Broy 28 Modelsward Rome February 2016

Example: Implicative Assertions

The A/P–specification
 assume: n#y = 0
 promise: n#x = 0

is not healthy, since
◊  the assumption does not constrain the input histories but the output.
◊  The promise n#y = 0 is not healthy as an assumption, since it does not

express properties of input stream x but only of output stream y.

The assertion n#y = 0 is not causal in history y, since causality in
y would require for all t ∈ IN

 y↓t = y’↓t ⇒ ∀ x: (n#y = 0) ≡ (n#y’ = 0)
which does not hold.
Assertion n#y = 0 is therefore not a healthy assumption, since it
is not causal in y and thus not realizable by any context.

 Manfred Broy 29 Modelsward Rome February 2016

Example: Implicative Assertions

In the assertion (which is equivalent to assertion con(x, y) by
contraposition)

 con(x, y) ≡ [n#x > 0 ⇒ n#y > 0]
the assertion n#x > 0 is causal in history y since the formula

 y↓t = y’↓t ⇒ ∀ x: (n#x↓t > 0) ≡ (n#x↓t > 0)
holds. It is furthermore trivially realizable.
This interface assertion may therefore be rewritten in the A/P-
format of a contract

 assume: n#x > 0
 promise: n#y > 0

with a healthy assumption.
Conclusion: Not every assertion is a healthy assumption.

 Manfred Broy 30 Modelsward Rome February 2016

From Interaction Assertions to
Assumptions and Promises

 Manfred Broy 31 Modelsward Rome February 2016

Process

Operational Context (OPC)

User Interface

Physical
and

technical
context

System under Consideration (SYS)

Interaction Assertion (IAS)
Properties for the observations
in the requirements
specification

Operational Context (ASU)
Assumptions for the
requirements specification

System (PRO)
Properties captured in the
system specification

ASU ˄ PRO ⇒ IAS

Given IAS, can we derive
ASU and PRO?

 Manfred Broy 32 Modelsward Rome February 2016

Notation

Throughout the presentation we use the following notation:
Given a predicate

 p: [C] → IB
we extend for every time t ∈ IN the predicate p also to finite
histories x of length t:

 p(x) ≡ ∃ x’ ∈ : x = x’↓t ∧ p(x’)

 Manfred Broy 33 Modelsward Rome February 2016

From Interaction Assertions to Contracts

 Let the interaction assertion

 ias: [I] × [O] → IB
be given
ias(x, y) is an assertion characterizing the interaction between
the system S and its context E in terms of the histories x and y.

X

y

E S

 Manfred Broy 34 Modelsward Rome February 2016

Context

System

Questions and answers

QAC x : Qst y : Asw

CIS y : Asw x : Qst

 ∀ t ∈ Time: Qst#(x↓t)+1 ≤ Asw#(y↓t)
∧ ∀ q ∈ Qst: q#x = A[q]#y

 Manfred Broy 35 Modelsward Rome February 2016

Deriving specs from interaction assertion

Can we derive from the interaction assertion:

the contract in terms of assumptions and promises for

 ∀ t ∈ Time: Qst#(x↓t)+1 ≤ Asw#(y↓t)
∧ ∀ q ∈ Qst: q#x = A[q]#y

QAC x : Qst y : Asw

CIS y : Asws x : Qsts

 Manfred Broy 36 Modelsward Rome February 2016

From Interaction Assertions to Contracts

Given an interaction assertion ias(x, y) we derive an A/P-
specification for system S with the weakest assumption by the
following steps:
(1) Separate ias into a safety and a liveness part
(2) Separate the safety part of ias canonically into an

assumption and a promise for system S
(3) Separate the liveness part of ias into an assumption and a

promise for system S
(4) Construct a contact being the A/P-specification of S from the

liveness and safety parts of the assumption and the promise.
 S x

y
ias(x, y)

E

 Manfred Broy 37 Modelsward Rome February 2016

From Interaction Assertions to Contracts: Safety

Deriving asu(x, y) and pro(x, y) from ias such that:

asu(x, y) ∧ pro(x, y): ias(x, y)

¬asu(x, y): ∃ t ∈ IN: ias(x↓t, y↓t+1) ∧ ¬ias(x↓t+1, y↓t+1)

¬pro(x, y): ∃ t ∈ IN: ias(x↓t, y↓t) ∧¬ias(x↓t, y↓t+1)

 Manfred Broy 38 Modelsward Rome February 2016

From Interaction Assertions to Contracts: Safety

Derive promise pro and a assumption asu from property ias

asu(x, y) ≡ [ias(x, y↓0)

∧ (∀ t: ias(x↓t, y↓t+1) ⇒ ias(x↓t+1, y↓t+1))]

pro(x, y) ≡ (∀ t: ias(x↓t, y↓t) ⇒ ias(x↓t, y↓t+1))

To eliminate partiality according to the input restriction in
assertion ias(x, y) derive from interaction assertion ias(x, y) the
weaker interface assertion con(x, y) specified by contract

 con(x, y) ≡ [asu(x, y) ⇒ pro(x, y)]
An easy proof shows that con(x, y) is strongly causal.

 Manfred Broy 39 Modelsward Rome February 2016

From Interaction Assertions to Contracts: Safety

Note that according to our initial assumption interaction assertion
ias(x, y) includes only safety properties.

Theorem:
With the definitions as given above we obtain under the
condition that assertion ias(x, y) is a pure safety property

 (asu(x, y) ∧ pro(x, y)) ⇔ ias(x, y)

 Manfred Broy 40 Modelsward Rome February 2016

From Interaction Assertions to Contracts: Liveness

If ias(x, y) includes nontrivial liveness conditions the separation
into assumptions and promises of ias(x, y) is less canonical than
for safety, in general.
•  Some liveness conditions definitely formulate properties

specifically about input histories x or histories y about output.
•  There are liveness conditions that can not be canonically

separated into assumptions and promises.
•  Example: the assertion

 {1}#x + {0}#y = ∞
can either be fulfilled by assuming an infinite number of copies
of 1 in input history x or by promising an infinite number of
copies of 0 in output history y.

 Manfred Broy 41 Modelsward Rome February 2016

From Interaction Assertions to Contracts: Liveness

Given an interaction assertion
 ias(x, y)

that is a pure liveness condition we define an assumption asuias
as follows

 asuias(x) ≡ ∃ y: ias(x, y)
and a promise proias by the equation

 proias(x, y) ≡ ias(x, y)
Those parts of the liveness property ias that can either be
fulfilled by the context or by the system under consideration are
made part of the promise.
◊  This way we get the weakest assumption and the strongest promise for

liveness properties of ias.

 Manfred Broy 42 Modelsward Rome February 2016

Deriving specs from interaction assertion

We derive from the interaction assertion:

the specs for

 ∀ t ∈ Time: Qst#(x↓t)+1 ≤ Asw#(y↓t)
∧ ∀ q ∈ Qst: q#x = A[q]#y

QAC x : Qst y : Asw

CIS y : Asws x : Qsts

 Manfred Broy 43 Modelsward Rome February 2016

Deriving specs from interaction assertion

We derive from the interaction assertion:

the specs for the system interface and the context:
Safety property in x and y

∀ t ∈ Time: Qst#(x↓t)+1 ≤ Asw#(y↓t)
is clearly an assumption.
The property

∀ q ∈ Qst: q#x = A[q]#y
is composed of a system safety property (by causality)

∀ t ∈ Time: ∀ q ∈ Qst: q#x↓t ≥ A[q]#y↓t+1
that is clearly a promise and liveness property

∀ q ∈ Qst: q#x ≤ A[q]#y
 that is turned into a promise.

 ∀ t ∈ Time: Qst#(x↓t)+1 ≤ Asw#(y↓t)
∧ ∀ q ∈ Qst: q#x = A[q]#y

Technische Universität
München

Institut für Informatik !

Service Layers and Service Stacks
Assumed and Promised Services

 Manfred Broy 45 Modelsward Rome February 2016

Service Layers

A service layer is a service
with syntactic interface (I∪O’ � I’∪O)
structured into an
promised (“exported”) service (I�O)
assumed (“imported”) service (I’�O’).

We assume I ∩ O' = ∅ and O ∩ I' = ∅.
A service layer is a service with the interface behavior

 L ∈ [I∪O’ � I’∪O]
where both input and output actions are disjoint sets.

O

O'I'

Service layer

I

 Manfred Broy 46 Modelsward Rome February 2016

Service Layers

We denote the syntactic interface
of a service layer by

 (I�O/O'�I') syntactic service layer interface
The service layer is a service

 L ∈ [I ∪ O'�O ∪ I']

O

O'I'

Service layer

I

 Manfred Broy 47 Modelsward Rome February 2016

Specifying Service Layers

To specify a service layer we specify two services:
The promised service F ∈ [I �O]
The assumed service R ∈ [I’�O’]

A layer provides the service F under the condition that it gets the

service R from “below”.

Note that
◊  R does not specify the service of the layer as promised by L but the

assumed service.

Given F and R we denote the layer L that offers service F
provided service R is offered as an auxiliary service by

F//R

O

O'I'

Service layer

I

 Manfred Broy 48 Modelsward Rome February 2016

Specifying Service Layers

Layer
L = F//R

is specified as follows (for x ∈ [I∪O’]

 L(x) = {y ∈ [I’∪O]: x|O’ ∈ R(y|I’) ⇒ y|O ∈ F(x|I) }

This expresses that
•  if the service assumed from “below” is correct as required and

specified by R than the offered service is as promised by F.
•  Note that this specification is written in the pattern of an

assumption/promise specification.

 Manfred Broy 49 Modelsward Rome February 2016

Composing Layers with Services

Given a service R' as requested from below
 R' ∈ [I'�O'] imported service

and a service layer

 L ∈ [I�O/O'�I']

where L = F//R
with given F ∈ [I�O] and R ∈ [I’�O’]
We get the composition of layer L with service R’

 L⊗R' ∈ [I�O] composition of layer L with service R’

Service Layer L

I O

I' O'

Service interface F'

 Manfred Broy 50 Modelsward Rome February 2016

Service Refinement

Given services
F, F' ∈ [I�O]

F' is called a refinement of F iff
∀ x ∈ [I]: F’(x) ⊆ F(x)

then we write
F ↣ F’

 Manfred Broy 51 Modelsward Rome February 2016

Composing Layers with Services

L⊗R' ∈ [I�O] is a refinement of the provided service F ∈ [I�O]
 F ↣ L⊗R’

provided service R’ is a refinement of the requested service R
 R ↣ R’

Given layer L = F//R we get the following proof rule for layered
architectures

L = F//R ∧ R ↣ R’
⇒

F ↣ L⊗R'

 Manfred Broy 52 Modelsward Rome February 2016

Composing Layers

Given two layers
 L ∈ [I�O/O'�I'], L' ∈ [I'�O'/O"�I"]

where we assume that I∩I'’ = ∅ and O∩O" = ∅;
we define the layer composition

 L⊗L' ∈ [I�O/O"�I"]
yielding a layer in [I�O/O"�I"].
Assume service L and L’ are described as follows

 L = F//R
 L’ = F’//R’

We call these two layers fitting if
 R ↣ F’

then we conclude F//R’ ↣ L⊗L'

Service Layer L

I O

I' O'

Service Layer L'

I" O"

proof rule for layered architectures

L = F//R ∧ L’ = F’//R’ ∧ R ↣ F’
⇒

F//R’ ↣ L⊗L’

 Manfred Broy 53 Modelsward Rome February 2016

Assumption/Promise Contracts at several levels

•  Assumptions about input
◊  What are healthy assumptions?

•  Assumptions about the behavior of the operational context
◊  What are generic properties of the operational context (what is the

model of context behavior)?

•  Decomposing interactions into assumptions and system
properties

•  Assumptions in architectures
◊  Show that validity of assumptions of the system guarantee all

assumptions of components of the system the system!

•  Assumptions about required services
◊  Specifying and composing service layers!

