
Making Model-Driven Verification Practical
and Scalable - Experiences and Lessons

Learned

Lionel Briand

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

MODELSWARD, Rome, February 20, 2016

Acknowledgements

PhD. Students:
•  Vahid Garousi
•  Marwa Shousha
•  Zohaib Iqbal
•  Reza Matinnejad
•  Stefano Di Alesio
•  Raja Ben Abdessalem

Others:
•  Shiva Nejati
•  Andrea Arcuri
•  Yvan Labiche

2

Verification, Testing

•  The term “verification” is used in its wider sense: Defect
detection.

•  Testing is, in practice, the most common verification
technique.

•  Testing is about systematically, and preferably
automatically, exercise a system such as to maximize
chances of uncovering (important) latent faults within time
constraints.

•  Other forms of verifications are important too (e.g., design
time, run-time), but much less present in practice.

•  Decades of research have not yet significantly and widely

impacted engineering practice.
3

Cyber-Physical Systems: Challenges

•  Increasingly complex and critical
systems

•  Complex environment
•  Hybrid discrete and continuous

behavior
•  Combinatorial and state

explosion
•  Complex requirements, e.g.,

temporal, timing, resource
usage

•  Uncertainty, e.g., about the
environment
 4

Scalable? Practical?

•  Scalable: Can a technique be applied on large
artifacts (e.g., models, data sets, input spaces) and
still provide useful support within reasonable effort,
CPU and memory resources?

•  Practical: Can a technique be efficiently and
effectively applied by engineers in realistic
conditions?
–  realistic ≠ universal

5

Focus

•  Formal Verification (Wikipedia): In the context of
hardware and software systems, formal
verification is the act of proving or disproving the
correctness of intended algorithms underlying a
system with respect to a certain formal specification
or property, using formal methods of mathematics.

•  Our focus: How can we, in a practical, effective and
efficient manner, uncover as many (critical) faults as
possible in software systems, within time
constraints, while scaling to artifacts of realistic
size.

6

Metaheuristics

•  Heuristic search (Metaheuristics): Hill climbing, Tabu

search, Simulated Annealing, Genetic algorithms, Ant
colony optimisation ….

•  Stochastic optimization: General class of algorithms

and techniques which employ some degree of
randomness to find optimal (or as optimal as
possible) solutions to hard problems

•  Many verification and testing problems can be re-
expressed as (hard) optimization problems

7

Talk Outline

•  Selected project examples, with industry
collaborations

•  Similarities and patterns

•  Lessons learned

8

Testing Software Controllers

References:

9

•  R. Matinnejad et al., “Automated Test Suite Generation for Time-continuous Simulink
Models“, IEEE/ACM ICSE 2016

•  R. Matinnejad et al., “Effective Test Suites for Mixed Discrete-Continuous Stateflow
Controllers”, ACM ESEC/FSE 2015 (Distinguished paper award)

•  R. Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers:
Scalable Search Using Surrogate Models”, IEEE/ACM ASE 2014 (Distinguished
paper award)

•  R. Matinnejad et al., “Search-Based Automated Testing of Continuous Controllers:
Framework, Tool Support, and Case Studies”, Information and Software Technology,
Elsevier (2014)

Dynamic Continuous Controllers

10

Electronic Control Units (ECUs)

More functions

Comfort and variety

Safety and reliability

Faster time-to-market

Less fuel consumption

Greenhouse gas emission laws

11

A Taxonomy of Automotive Functions

Controlling Computation

State-Based Continuous Transforming Calculating

unit convertors calculating positions,
duty cycles, etc

State machine
controllers

Closed-loop
controllers (PID)

Different testing strategies are required for
different types of functions

12

Development Process

13

Hardware-in-the-Loop
Stage

Model-in-the-Loop
Stage

Simulink Modeling

 Generic
Functional

Model

MiL Testing

Software-in-the-Loop
Stage

Code Generation
and Integration

Software Running
on ECU

SiL Testing

 Software
Release

HiL Testing

MATLAB/Simulink model

Fibonacci sequence: 1,1,2,3,5,8,13,21,…

14

Controller Input and Output at MIL

Initial
Desired Value

Final
Desired Value

time time

Desired Value

Actual Value

T/2 T T/2 T

Test Input Test Output

Plant
Model

Controller
(SUT)

Desired value Error

Actual value

System output+
-

15

Controllers at MIL

16

Plant Model

+
+

+

⌃

+
-

e(t)

actual(t)

desired(t)

⌃

KP e(t)

KD
de(t)
dt

KI

R
e(t) dt

P

I

D

output(t)

Inputs: Time-dependent variables

Configuration Parameters

Requirements and Test Objectives

17

In
iti

al
 D

es
ire

d
(ID

)

Desired ValueI (input)
Actual Value (output)

Fi
na

l D
es

ire
d

(F
D

)

time
T/2 T

Smoothness

Responsiveness

Stability

Test Strategy: A Search-Based Approach

18

Initial Desired (ID)

Fi
na

l D
es

ire
d

(F
D

)

Worst Case(s)?

•  Continuous behavior
•  Controller’s behavior can

be complex
•  Meta-heuristic search in

(large) input space:
Finding worst case inputs

•  Possible because of
automated oracle
(feedback loop)

•  Different worst cases for
different requirements

•  Worst cases may or may
not violate requirements

Smoothness Objective Functions: OSmoothness

Test Case A Test Case B

OSmoothness(Test Case A) > OSmoothness(Test Case B)

We want to find test scenarios which maximize OSmoothness

19

20

Search Elements

•  Search Space:
•  Initial and desired values, configuration parameters

•  Search Technique:
•  (1+1) EA, variants of hill climbing, GAs …

•  Search Objective:
•  Objective/fitness function for each requirement

•  Evaluation of Solutions
•  Simulation of Simulink model => fitness computation

•  Result:
•  Worst case scenarios or values to the input variables that (are
more likely to) break the requirement at MiL level
•  Stress test cases based on actual hardware (HiL)

20

Solution Overview (Simplified Version)

21

HeatMap
Diagram

1. Exploration
List of
Critical
RegionsDomain

Expert

Worst-Case
Scenarios

+
Controller-

plant
model

Objective
Functions
based on

Requirements
2. Single-State

Search

time

Desired Value
Actual Value

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Initial Desired

Final Desired

Automotive Example

•  Supercharger bypass flap controller
ü Flap position is bounded within [0..1]
ü Implemented in MATLAB/Simulink
ü 34 sub-components decomposed into 6

abstraction levels
ü The simulation time T=2 seconds

Supercharger

Bypass Flap

Supercharger

Bypass Flap

Flap position = 0 (open) Flap position = 1 (closed)
22

Finding Seeded Faults
Inject Fault

23

Analysis – Fitness increase over iterations

24
Number of Iterations

Fi
tn

es
s

Analysis II – Search over different regions

25

0.315

0.316

0.317

0.319

0.321

0.323

0.324

0.326

0.327

0.329

0.330

0 10 20 30 40 50 60 70 80 90 100

0.328

0.325

0.320

0.318

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

Random Search
(1+1) EA

0 10 20 30 40 50 60 70 80 90 100

0.0166

0.0168

0.0170

0.0176

0.0180

0.0178

0.0172

0.0160

0.0162

0.0164 Random Search
(1+1) EA

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0.0174

Average (1+1) EA Distribution Random Search Distribution

Number of Iterations

•  We found much worse scenarios during MiL testing than our
partner had found so far, and much worse than random
search (baseline)

•  These scenarios are also run at the HiL level, where testing is
much more expensive: MiL results -> test selection for HiL

•  But further research was needed:
–  Simulations are expensive
–  Configuration parameters
–  Dynamically adjust search algorithms in different

subregions (exploratory <-> exploitative)

Conclusions

i.e., 31s. Hence, the horizontal axis of the diagrams in Figure 8 shows the number of
iterations instead of the computation time. In addition, we start both random search and
(1+1) EA from the same initial point, i.e., the worst case from the exploration step.

Overall in all the regions, (1+1) EA eventually reaches its plateau at a value higher
than the random search plateau value. Further, (1+1) EA is more deterministic than ran-
dom, i.e., the distribution of (1+1) EA has a smaller variance than that of random search,
especially when reaching the plateau (see Figure 8). In some regions (e.g., Figure 8(d)),
however, random reaches its plateau slightly faster than (1+1) EA, while in some other
regions (e.g. Figure 8(a)), (1+1) EA is faster. We will discuss the relationship between
the region landscape and the performance of (1+1) EA in RQ3.
RQ3. We drew the landscape for the 11 regions in our experiment. For example, Fig-
ure 9 shows the landscape for two selected regions in Figures 7(a) and 7(b). Specifically,
Figure 9(a) shows the landscape for the region in Figure 7(b) where (1+1) EA is faster
than random, and Figure 9(b) shows the landscape for the region in Figure 7(a) where
(1+1) EA is slower than random search.

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80
0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

(a) (b)

Fig. 9. Diagrams representing the landscape for two representative HeatMap regions: (a) Land-
scape for the region in Figure 7(b). (b) Landscape for the region in Figure 7(a).

Our observations show that the regions surrounded mostly by dark shaded regions
typically have a clear gradient between the initial point of the search and the worst case
point (see e.g., Figure 9(a)). However, dark regions located in a generally light shaded
area have a noisier shape with several local optimum (see e.g., Figure 9(b)). It is known
that for regions like Figure 9(a), exploitative search works best, while for those like Fig-
ure 9(b), explorative search is most suitable [10]. This is confirmed in our work where
for Figure 9(a), our exploitative search, i.e., (1+1) EA with � = 0.01, is faster and more
effective than random search, whereas for Figure 9(b), our search is slower than random
search. We applied a more explorative version of (1+1) EA where we let � = 0.03 to the
region in Figure 9(b). The result (Figure 10) shows that the more explorative (1+1) EA
is now both faster and more effective than random search. We conjecture that, from the
HeatMap diagrams, we can predict which search algorithm to use for the single-state
search step. Specifically, for dark regions surrounded by dark shaded areas, we suggest
an exploitative (1+1) EA (e.g., � = 0.01), while for dark regions located in light shaded
areas, we recommend a more explorative (1+1) EA (e.g., � = 0.03).

6 Related Work
Testing continuous control systems presents a number of challenges, and is not yet sup-
ported by existing tools and techniques [4, 1, 3]. The modeling languages that have been

13

26

Testing in the Configuration Space

•  MIL testing for all feasible configurations

•  The search space is much larger

•  The search is much slower (Simulations of Simulink
models are expensive)

•  Results are harder to visualize

•  Not all configuration parameters matter for all
objective functions

27

Modified Process and Technology

28

+
Controller

Model
(Simulink)

Worst-Case
Scenarios

List of
Critical

PartitionsRegression
Tree

1.Exploration with
Dimensionality

Reduction

2.Search with
Surrogate
Modeling

Objective
Functions

Domain
Expert

Visualization of the
8-dimension space
using regression trees Dimensionality

reduction to identify
the significant variables
(Elementary Effect Analysis)

Surrogate modeling
to predict the objective
function and
speed up the search
(Machine learning)

Dimensionality Reduction

•  Sensitivity Analysis:
Elementary Effect Analysis
(EEA)

•  Identify non-influential
inputs in computationally
costly mathematical
models

•  Requires less data points
than other techniques

•  Observations are
simulations generated
during the Exploration step

•  Compute sample mean
and standard deviation for
each dimension of the
distribution of elementary
effects

29

Cal5
ID

Cal3
FD

Cal4
Cal6

Cal1,Cal2

0.6

0.4

0.2

0.0

Sa
m

pl
e

St
an

da
rd

 D
ev

ia
tio

n
(

)

-0.6 -0.4 -0.2 0.0 0.2
Sample Mean ()

⇤10�2

⇤10�2

S
� i

�i

Elementary Effects Analysis Method

ü  Imagine function F with 2 inputs, x and y:

A �
x

�y

A1

A2

C �
x

�y

C1

C2

B �
x

�y

B1

B2

X

Y

Elementary Effects
for X for Y

F(A1)-F(A)
F(B1)-F(B)
F(C1)-F(C)

…

F(A2)-F(A)
F(B2)-F(B)
F(C2)-F(C)

…

30

Visualization in Inputs & Configuration Space

31

All Points

FD>=0.43306

Count
Mean
Std Dev

Count
Mean
Std Dev

FD<0.43306
Count
Mean
Std Dev

ID>=0.64679
Count
Mean
Std Dev

Count
Mean
Std Dev

Cal5>=0.020847 Cal5>0.020847
Count
Mean
Std Dev

Count
Mean
Std Dev

Cal5>=0.014827 Cal5<0.014827
Count
Mean
Std Dev

Count
Mean
Std Dev

1000
0.007822

0.0049497

ID<0.64679

574
0.0059513
0.0040003

426
0.0103425
0.0049919

373
0.0047594
0.0034346

201
0.0081631
0.0040422

182
0.0134555
0.0052883

244
0.0080206
0.0031751

70
0.0106795
0.0052045

131
0.0068185
0.0023515 Regression Tree

Surrogate Modeling (1)

•  Goal: To predict the value of the objective functions within a
critical partition, given a number of observations, and use that to
avoid as many simulations as possible and speed up the search

32

A

B

Surrogate Modeling (2)

33

•  Any supervised learning or
statistical technique
providing fitness predictions
with confidence intervals

1.  Predict higher fitness with
high confidence: Move to
new position, no simulation

2.  Predict lower fitness with
high confidence: Do not
move to new position, no
simulation

3.  Low confidence in
prediction: Simulation

Surrogate Model

Real Function

x

Fitness

Experiments Results (RQ1)

ü  The best regression technique to build Surrogate models
for all of our three objective functions is Polynomial
Regression with n = 3
ü Other supervised learning techniques, such as SVM

Mean of R2/MRPE values for different surrogate modeling techniques

Fst

Fsm

Fr

PR(n=3)
R2/MRPE

0.66/0.0526 0.95/0.0203

0.78/0.0295

0.26/0.2043

0.98/0.0129

0.85/0.0247 0.85/0.0245

0.46/0.1755 0.54/0.1671

0.44/0.0791

0.49/1.2281

0.22/1.2519

LR
R2/MRPE

ER
R2/MRPE

PR(n=2)
R2/MRPE

34

Experiments Results (RQ2)

ü Dimensionality reduction helps generate better surrogate
models for Smoothness and Responsiveness
requirements

0.0

0.02

0.04

0.06

0.08 0.05

0.01

0.02

0.03

0.04

0.1

0.2

0.3

DR No DR DR No DR DR No DR

Smoothness()Fsm Responsiveness()Fr Stability()Fst

M
ea

n
R

el
at

iv
e

Pr
ed

ic
tio

n
Er

ro
rs

(M

R
PE

 V
al

ue
s)

35

ü  For responsiveness, the search with SM was 8 times faster

ü  For smoothness, the search with SM was much more effective

Experiments Results (RQ3)

Se
ar

ch
 O

ut
pu

t
Va

lu
es

Se
ar

ch
 O

ut
pu

t
Va

lu
es

0.215
SM

After 800 seconds After 2500 seconds After 3000 seconds

NoSM

0.220

0.225

0.230

0.235

SM NoSMSM NoSM

After 200 seconds

0.160

0.164

0.168

After 300 seconds After 3000 seconds

NoSM NoSM SM NoSMSM SM

36

ü Our approach is able to identify critical violations of the
controller requirements that had neither been found by
our earlier work nor by manual testing.

MiL-Testing
different configurations

Stability

Smoothness

Responsiveness

MiL-Testing
fixed configurations Manual MiL-Testing

- -2.2% deviation

24% over/undershoot 20% over/undershoot 5% over/undershoot

170 ms response time 80 ms response time 50 ms response time

Experiments Results (RQ4)

37

A Taxonomy of Automotive Functions

Controlling Computation

State-Based Continuous Transforming Calculating

unit convertors calculating positions,
duty cycles, etc

State machine
controllers

Closed-loop
controllers (PID)

Different testing strategies are required for
different types of functions

38

Differences with Close-Loop Controllers

39

respectively. In addition, we adapt the whitebox coverage and the
blackbox output diversity selection criteria to Stateflows, and evalu-
ate their fault revealing power for continuous behaviours. Coverage
criteria are prevalent in software testing and have been considered
in many studies related to test suite effectiveness in different appli-
cation domains [?]. In our work, we consider state and transition
coverage criteria [?] for Statflows. Our output diversity criterion is
based on the recent output uniqueness criterion [?] that has been
studied for web applications and has shown to be a useful surro-
gate to whitebox selection techniques. We consider this criterion
in our work because Stateflows have complex internal structures
consisting of differential equations, making them less amenable to
whitebox techniques, while they have rich time-continuous outputs.

In this paper, we make the following contributions:

• We focus on the problem of testing Stateflows with mixed
discrete-continuous behaviours. We propose two new test
case selection criteria output stability and output continuity
with the goal of selecting test inputs that are likely to pro-
duce continuous outputs exhibiting instability and disconti-
nuity failures, respectively.

• We adapt the whitebox coverage and the blackbox output
diversity selection criteria to Stateflows, and evaluate their
fault revealing power for continuous behaviours. The former
is defined based on traditional state and transition coverage
for state machines, and the latter is defined based on the re-
cent output uniqueness criterion [?].

• We evaluate effectiveness of our newly proposed and the
adapted selection criteria by applying them to three Stateflow
case study models: two industrial and one public domain.
Our results show that RESULT.

Organization of the paper.

2. BACKGROUND AND MOTIVATION
Motivating example. We motivate our work using a simplified
Stateflow from the automotive domain which controls a supercharger
clutch and is referred to as the Supercharger Clutch Controller (SCC).
Figure 1(a) represents the discrete behaviour of SCC specifying
that the supercharger clutch can be in two quiescent states [?]: en-
gaged or disengaged. Further, the clutch moves from the disen-
gaged to the engaged state whenever both the engine speed engspd
and the engine coolant temperature tmp respectively fall inside the
specified ranges of [smin..smax] and [tmin..tmax]. The clutch
moves back from the engaged to the disengaged state whenever
either the speed or the temperature falls outside their respective
ranges. The variable ctrlSig in Figure 1(a) indicates the sign and
magnitude of the voltage applied to the DC motor of the clutch
to physically move the clutch between engaged and disengaged
positions. Assigning 1.0 to ctrlSig moves the clutch to the en-
gaged position, and assigning �1.0 to ctrlSig moves it back to
the disengaged position. To avoid clutter in our figures, we use
engageReq to refer to the condition on the Disengaged ! En-
gaged transition, and disengageReq to refer to the condition on
the Engaged ! Disengaged transition.

The discrete transition system in Figure 1(a) assumes that the
clutch movement takes no time, and further, does not provide any
insight on the quality of movement of the clutch. Figure 1(b) ex-
tends the discrete transition system in Figure 1(a) by adding a timer
variable, i.e., time, to explicate the passage of time in the SCC
behaviour. The new transition system in Figure 1(b) includes two

(a) SCC -- Discrete Behaviour

(b) SCC -- Timed Behaviour

EngagedDisengaged

Engaging

(c) Engaging state of SCC -- mixed discrete-continuous behaviour

Disengaging

Disengaged

Engaged

time + +;

[disengageReq]/time := 0

[t
i
m
e

>
5]

[t
i
m
e

>
5]

time + +;

[(engspd > smin � engspd < smax) � (tmp > tmin � tmp < tmax)]/
ctrlSig := 1

[engageReq]/ time := 0

[¬(engspd > smin � engspd < smax) � ¬(tmp > tmin � tmp < tmax)] /
ctrlSig := �1

OnMoving OnSlipping

OnCompleted

time + +;
ctrlSig := f(time)

Engaging

time + +;
ctrlSig := g(time)

time + +;
ctrlSig := 1.0

[¬(vehspd = 0) �
time > 2]

[(vehspd = 0) �
time > 3]

[time > 4]

Figure 1: Supercharge Clutch Controller (SCC) Stateflow.

transient states [?], engaging and disengaging, specifying that mov-
ing from the engaged to the disengaged state and vice versa takes
six milisec. Since this model is simplified, it does not show han-
dling of alterations of the clutch state during the transient states.
In addition to adding the time variable, we note that the variable
ctrlSig, which controls physical movement of the clutch, cannot
abruptly jump from 1.0 to �1.0, or vice versa. In order to ensure
safe and smooth movement of the clutch, the variable ctrlSig has
to gradually move between 1.0 and �1.0 and be described as a
function over time, i.e., a signal. To express the evolution of the
ctrlSig signal over time, we decompose the transient states en-
gaging and disengaging into sub-state machines. Figure 1(c) shows
the sub-state machine related to the engaging state. The one related
to the disengaging state is similar. At beginning (in state OnMov-
ing), the function ctrlSig has a steep grade (i.e., function f) to
move the stationary clutch from the disengaged state and acceler-
ate it to reach a certain speed in about two milisec. Afterwards (in
state OnSlipping), ctrlSig decreases the speed of clutch based
on the gradual function g until about four milisec. This is to ensure
that the clutch slows down as it gets closer to the crank shaft of
the car. Finally, at state OnCompleted, ctrlSig reaches value 1.0
and remains constant, causing the clutch to get engaged in about
one milisec. When the car is stationary, i.e., vehspd is 0, the clutch
moves based on the steep grade function f for three milisec, and
does not have to go to the OnSlipping phase to slow down before
it reaches the crank shaft at state OnCompleted.
Input and Output. The Stateflow inputs and outputs are signals
(functions over time). Each input/output signal has a data type,
e.g. boolean, enum or float, specifying the range of the signal.
For example, Figure 2 shows an example input (dashed line) and
output (solid line) signals for SCC. The input signal is related to
engageReq and is boolean, while the output signal is related to

•  Mixed discrete-continuous
behavior: Simulink stateflows

•  Much quicker simulation time

•  No feedback loop -> no
automated oracle

•  The main testing cost is the
manual analysis of output signals

•  Goal: Minimize test suites

•  Challenge: Test selection

•  Entirely different approach to
testing

On

Off

CtrlSig

Selection Strategies Based on Search

•  Input diversity
•  White-box Structural

Coverage
•  State Coverage
•  Transition Coverage

•  Output Diversity
•  Failure-Based Selection

Criteria
•  Domain specific failure

patterns
•  Output Stability
•  Output Continuity

40

S3
t

S3
t

Failure-based Test Generation

4
1

Instability Discontinuity

0.0 1.0 2.0
-1.0

-0.5

0.0

0.5

1.0

Time

C
tr

lS
ig

 O
ut
pu
t

•  Maximizing the likelihood of presence of specific failure patterns
in output signals

•  Failure patterns elicited from engineers

0.0 1.0 2.0
Time

0.0

0.25

0.50

0.75

1.0

C
tr

lS
ig

 O
ut
pu
t

Summary of Results

•  The test cases resulting from state/transition
coverage algorithms cover the faulty parts of
the models

•  However, they fail to generate output signals
that are sufficiently distinct from the oracle
signal, hence yielding a low fault revealing
rate

•  Output-based algorithms are more effective

42

Automated Testing of Vision Systems
Through Simulation

43

•  With Raja Ben Abdessalem, Shiva Nejati
•  In collaboration with IEE, Luxembourg

Night Vision (NiVi) System

44

•  The NiVi system is a camera-based
assistance system providing improved
vision at night

Testing Vision Systems

•  Testing vision systems requires complex and
comprehensive simulation environments
–  Static objects: roads, weather, etc.
–  Dynamic objects: cars, humans, animals, etc.

•  A simulation environment captures the behaviour of
dynamic objects as well as constraints and
relationships between dynamic and static objects

45

Generation of Test
specifications

Static
[ranges/values/

resolution]

Dynamic
[ranges/

resolution]

(2)

test case specification

Overview

46

Specification Documents
(Simulation Environment and NiVi System)

Domain
model

Requirements
model

(1)Development of Requirements
and domain models

Traceability

NiVi and Environment Domain Model

47

Speed
Profile

Path
1 1

Slot Path
Segment

1..**
1

Infrastructure

Object

ActorEnvironment

Underlays

Nature
Element

Human

Car/Motor/
Truck/Bus

(+NiVi)

Animal
Dirt Spot

Road

Buildings

Abstract
Buildings

TrafficSign

Animated
Element

Trajectory*

1

Requirements Model

48

<<trace>> <<trace>>

Speed
Profile

Path
1 1

Slot Path
Segment

1..**
1

Trajectory Human
1*

trajectory

Warning
Sensors posx1, posx2

posy1, posy2

AWACar/Motor/
Truck/Bus

sensor
has

has
awa

1
1

1

*

human
appears

posx1 posx2

posy1

posy2

The NiVi system shall detect any person
located in the Acute Warning Area of a vehicle

MiL Testing via Search

49

Simulator + NiVi

Environment
Settings
(Roads, weather,
vehicle type, etc.)

Fixed during Search Manipulated by Search

Human Simulator
(initial position,

speed, orientation)

Car Simulator
(speed)

NiVi

Meta-heuristic Search
(multi-objective)

Generate
scenarios

Detection
or not?

Collision
or not?

5
0

Type of Road Type of vehicle Type of actor
Situation 1 Straight Car Male
Situation 2 Straight Car Child
Situation 3 Straight Car Cow
Situation 4 Straight Truck Male
Situation 5 Straight Truck Child
Situation 6 Straight Truck Cow
Situation 7 Curved Car Male
Situation 8 Curved Car Child
Situation 9 Curved Car Cow
Situation 10 Curved Truck Male
Situation 11 Curved Truck Child
Situation 12 Curved Track Cow
Situation 13 Ramp Car Male
Situation 14 Ramp Car Child
Situation 15 Ramp Car Cow
Situation 16 Ramp Truck Male
Situation 17 Ramp Truck Child
Situation 18 Ramp Truck Cow
Situation 19
Situation 20

Straight Car+ Cars in parking
Car + buildings

Male

Test Case Specification: Static
(combinatorial)

Test Case Specification: Dynamic

51

Start locationX = 74
Start locationY = 37.72
Start locationZ = 0
Orientation = 0

trajectoryPerson : TrajectoryPositionX= 74
Position Y= 37.72
Position Z = 0
OrientationHeading = 93.33
Acceleration = 0
MaxWalkingSpeed =14
height=1.75

person :Actor

UniqueId

profilePerson :
Speed Profile

StartPointX = 74
StartPointY = 37.72
StartPointY = 0
StartAngle = 93.33
End Angle = 0
Length = 60

pathPerson : Path

Length = 60
Type = Straight
MaxSpeedLimit = 14

segmentPerson : Path Segment

ID
slotPerson : Slot

Time = 0
Speed = 12.59

startPerson :
StartState

Start locationX = 10
Start locationY = 50.125
Start locationZ = 0.56
Orientation = 0

trajectoryCar : TrajectoryPositionX=10
Position Y= 50.125
Position Z = 0.56
OrientationHeading = 0
Acceleration = 0
MaxWalkingSpeed =100

car : Actor

UniqueId

profileCar : Speed
Profile

StartPointX = 10
StartPointY = 50.125
StartPointZ =0.56
StartAngle = 0
End Angle = 0
Length = 100

pathCar : Path

Length = 100
Type = Straight
MaxSpeedLimit = 100

segmentCar : Path Segment

ID
slotCar : Slot

Time = 0
Speed = 60.66

startCar :
StartState

MinTTC=0.3191
Collision

Multi-Objective Search

•  Objective functions:
–  Distance to Car “D(P/Car)”, Time To

Collision “TTC”, and Distance to AWA
“D(P/AWA)”

•  The goal is to identify scenarios that
minimize our three objectives at the same
times in different environment situations

•  Identify automatically most important
risky environment situations
–  e.g., ramped roads, curved roads,

blocked field of views, and animal as
the object to detect

•  Challenge: Simulation time => surrogate
modeling?

•  Found many failures in NiVi

52

Minimizing CPU Shortage Risks
During Integration

References:

53

•  S. Nejati et al., ‘‘Minimizing CPU Time Shortage Risks in Integrated Embedded
Software’’, in 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2013), 2013

•  S. Nejati, L. Briand, “Identifying Optimal Trade-Offs between CPU Time Usage and
Temporal Constraints Using Search”, ACM International Symposium on Software
Testing and Analysis (ISSTA 2014), 2014

Automotive: Distributed Development

54

Software Integration

55

•  Develop software optimized for
their specific hardware

•  Provide part suppliers with

runnables (exe)

•  Integrate car makers software
with their own platform

•  Deploy final software on ECUs
and send them to car makers

Car Makers Part Suppliers

Stakeholders

56

•  Objective: Effective execution and
synchronization of runnables

•  Some runnables should execute
simultaneously or in a certain order

•  Objective: Effective usage of
CPU time

•  Max CPU time used by all the

runnables should remain as low
as possible over time

Car Makers Part Suppliers

Different Objectives

57

An overview of an integration process in the
automotive domain

AUTOSAR Models
sw runnables

sw runnables AUTOSAR Models

Glue

58

59

CPU time shortage

•  Static cyclic scheduling: predictable, analyzable
•  Challenge

–  Many OS tasks and their many runnables run within a limited
available CPU time

•  The execution time of the runnables may exceed their time slot

•  Goal
–  Reducing the maximum CPU time used per time slot to be

able to
•  Minimize the hardware cost
•  Reduce the probability of overloading the CPU in practice
•  Enable addition of new functions incrementally

59

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

✗

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms
✔

(a)

(b)

Fig. 4. Two possible CPU time usage simulations for an OS task with a 5ms
cycle: (a) Usage with bursts, and (b) Desirable usage.

its corresponding glue code starts by a set of declarations
and definitions for components, runnables, ports, etc. It then
includes the initialization part followed by the execution part.
In the execution part, there is one routine for each OS task.
These routines are called by the scheduler of the underlying
OS in every cycle of their corresponding task. Inside each
OS task routine, the runnables related to that OS task are
called based on their period. For example, in Figure 3, we
assume that the cycle of the task o1 is 5ms, and the period
of the runnables r1, r2, and r3 are 10ms, 20ms and 100ms,
respectively. The value of timer is the global system time. Since
the cycle of o1 is 5, the value of timer in the Task o1() routine
is always a multiple of 5. Runnables r1, r2 and r3 are then
called whenever the value of timer is zero, or is divisible by
the period of r1, r2 and r3, respectively.

Although AUTOSAR provides a standard means for OEMs
and suppliers to exchange their software, and essentially
enables the process in Figure 1, the automotive integration
process still remains complex and erroneous. A major inte-
gration challenge is to minimize the risk of CPU shortage
while running the integrated system in Figure 1. Specifically,
consider an OS task with a 5ms cycle. Figure 4 shows two
possible CPU time usage simulations of this task over eight
time slots between 0 to 40ms. In Figure 4(a), there are bursts
of high CPU usage at two time slots at 0ms and 35ms, while
the CPU usage simulation in Figure 4(b) is more stable and
does not include any bursts. In both simulations, the total
CPU usage is the same, but the distribution of the CPU usage
over time slots is different. The simulation in Figure 4(b) is
more desirable because: (1) It minimizes the hardware costs
by lowering the maximum required CPU time. (2) It facilitates
the assignment of new runnables to an OS task, and hence,
enables the addition of new functions as it is typically done in
the incremental design of car manufacturers. (3) It reduces the
possibility of overloading CPU as the CPU time usage is less
likely to exceed the OS task cycle (i.e., 5ms) in any time slot.
Ideally, a CPU usage simulation is desirable if in each time
slot, there is a sufficiently large safety margin of unused CPU
time. Due to inaccuracies in estimating runnables’ execution
times, it is expected that the unused margin shrinks when the
system runs in a real car. Hence, the larger is this margin, the
lower is the probability of exceeding the limit in practice.

In this paper, we study the problem of minimizing bursts
of CPU time usage for a software system composed of a
large number of concurrent runnables. A known strategy to
eliminate high CPU usage bursts is to shift the start time
(offset) of runnables, i.e., to insert a delay prior to the start of
the execution of runnables [5]. Offsets of the runnables must
satisfy three constraints: C1. The offset values should not lead

to deadline misses, i.e., they should not cause the runnables to
run passed their periods. C2. Since the runnables are invoked
by OS tasks, the offset values of each runnable should be
divisible by the OS task cycle related to that runnable. C3. The
offset values should not interfere with data dependency and
synchronization relations between runnables. For example,
suppose runnables r1 and r2 have to execute in the same time
slot because they need to synchronize. The offset values of r1
and r2 should be chosen such that they still run in the same
time slot after being shifted by their offsets.

There are four important context factors that are in line with
AUTOSAR [13], and have influenced our work:

CF1. The runnables are not memory-bound, i.e., the CPU
time is not significantly affected by the low-bound memory
allocation activities such as transferring data in and out of
the disk and garbage collection. Hence, our analysis of CPU
time usage is not affected by constraints related to memory
resources (see Section III-B).

CF2. The runnables are Offset-free [4], that is the offset of
a runnable can be freely chosen as long as it does not violate
the timing constraints C1-C3 (see Section III-B).

CF3. The runnables assigned to different OS tasks are
independent in the sense that they do not communicate with
one another and do not share memory. Hence, the CPU time
used by an OS task during each cycle is not affected by other
OS tasks running concurrently. Our analysis in this paper,
therefore, focuses on individual OS tasks.

CF4. The execution times of the runnables are remarkably
smaller than the runnables’ periods and the OS task cycles.
Typical OS task cycles are around 1ms to 5ms. The runnables’
periods are typically between 10ms to 1s, while the runnables’
execution times are between 10ns = 10�5ms to 0.2ms.

Our goal is to compute offsets for runnables such that the
CPU usage is minimized, and further, the timing constraints,
C1-C3, discussed earlier above hold. This requires solving
a constraint-based optimization problem, and can be done in
three ways: (1) Attempting to predict optimal offsets in a de-
terministic way, e.g., algorithms based on real-time scheduling
theory [6]. In general, these algorithms explore a very small
part of the search space, i.e., worst/best case situations only
(see Section V for a discussion). (2) Formulating the problem
as a (symbolic) constraint model and applying a systematic
constraint solver [14], [15]. Due to assumption CF4 above,
the search space in our problem is too large, resulting in
a huge constraint model that does not fit in memory (see
Section V for more details). (3) Using metaheuristic search-
based techniques [9]. These techniques are part of the general
class of stochastic optimization algorithms which employ
some degree of randomness to find optimal (or as optimal
as possible) solutions to hard problems. These approaches are
applied to a wide range of problems, and are used in this paper.

III. SEARCH-BASED CPU USAGE MINIMIZATION

In this section, we describe our search-based technique for
CPU usage minimization. We first define a notation for our
problem in Section III-A. We formalize the timing constraints,

60

Using runnable offsets (delay times)

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms ✗

✔

Inserting runnables’ offsets

Offsets have to be chosen such that
the maximum CPU usage per time slot is minimized, and further,

 the runnables respect their period
 the runnables respect their time slot
 the runnables satisfy their synchronization constraints

60

5.34ms 5.34ms
5 ms

Time

C
PU

 ti
m

e
us

ag
e

(m
s)

CPU time usage exceeds the size of the slot (5ms)

Without optimization

61

CPU time usage always remains less than 2.13ms, so
more than half of each slot is guaranteed to be free

2.13ms

5 ms

Time

C
PU

 ti
m

e
us

ag
e

(m
s)

With Optimization

62

Single-objective Search algorithms
 Hill Climbing and Tabu Search and their variations

Solution Representation

 a vector of offset values: o0=0, o1=5, o2=5, o3=0

Tweak operator

 o0=0, o1=5, o2=5, o3=0 à o0=0, o1=5, o2=10, o3=0

Synchronization Constraints

 offset values are modified to satisfy constraints

 Fitness Function
 max CPU time usage per time slot

63

Summary of Problem and Solution

Optimization

while satisfying synchronization/
temporal constraints

Explicit Time

Model

for real-time embedded systems

Search

meta-heuristic single objective
search algorithms

10^27

an industrial case study with a
large search space

 64

65

Search Solution and Results

Case Study: an automotive software system with 430 runnables,
search space = 10^27

Running the system without offsets

Simulation for the runnables in our case study and
corresponding to the lowest max CPU usage found by HC

5.34 ms

Optimized offset assignment

2.13 ms

-  The objective function is the max CPU usage of a 2s-simulation of
runnables

-  The search modifies one offset at a time, and updates other offsets
only if timing constraints are violated

-  Single-state search algorithms for discrete spaces (HC, Tabu)

65

66

Comparing different search algorithms

(m
s)

(s
)

Best CPU usage

Time to find
Best CPU usage

66

67

Comparing our best search algorithm with
random search

(a) (b) (c)(a)

Lowest max CPU usage values computed by HC within 70 ms
over 100 different runs

Lowest max CPU usage values computed by Random
within 70 ms over 100 different runs

Comparing average behavior of Random and HC in computing
lowest max CPU usage values within 70 s and over 100 different runs

67

HC Random Average

0ms 5ms 10ms 15ms 20ms 25ms 30ms

0ms 5ms 10ms 15ms 20ms 25ms 30ms

0ms 5ms 10ms 15ms 20ms 25ms 30ms
4ms

3ms

2ms

Car Makers Part Suppliers r0 r1 r2 r3

Minimize CPU time usage

1 slot

2 slots

3 slots

Execute r0 to r3 close to one another.

Trade-off between Objectives

68

Trade-off curve

of
 s

lo
ts

CPU time usage (ms) 2.04
1.45

12

21

14

1.56

1

2

3

Boundary Trade Offs

Interesting

Solutions

69

Multi-objective search

•  Multi-objective genetic algorithms (NSGA II)
•  Pareto optimality
•  Supporting decision making and negotiation between

stakeholders

70

Report: GraphRandom-NSGAII-25 Page 1 of 2

CPU Time Usage-NSGAII & CPU Time Usage-Random vs. Number
of Slots-NSGAII & Number of Slots-Random

Number of Slots-NSGAII & Number of Slots-Random
10 15 20 25 30 35 40 45 50

C
PU

 T
im

e
U

sa
ge

-N
SG

AI
I &

 C
PU

 T
im

e
U

sa
ge

-R
an

do
m

1.5

2.0

2.5

3.0

3.5

Graph Builder

Total Number of Time Slots

M
ax

 C
PU

 T
im

e
U

sa
ge

 (m
s)

Random(25,000)
NSGA-II(25,000)

A

B

12

1.45

C

Objectives:
•  (1) Max CPU time
•  (2) Maximum time

slots between
“dependent” tasks

Input.csv:
-  runnables
-  Periods
-  CETs
-  Groups
-  # of slots per

groups

Search
A list of solutions:
-  objective 1 (CPU usage)
-  objective 2 (# of slots)
-  vector of group slots
-  vector of offsets

Visualization/
Query Analysis

-  Visualize solutions
-  Retrieve/visualize

simulations
-  Visualize Pareto Fronts
-  Apply queries to the

solutions

Trade-Off Analysis Tool

71

72

Conclusions

-  Search algorithms to compute
offset values that reduce the
max CPU time needed

-  Generate reasonably good
results for a large automotive
system and in a small amount of
time

-  Used multi-objective search à
tool for establishing trade-off
between relaxing
synchronization constraints and
maximum CPU time usage

72

Schedulability Analysis and Stress
Testing

References:

73

•  S. Di Alesio et al., “Stress Testing of Task Deadlines: A Constraint Programming
Approach”, IEEE ISSRE 2013, San Jose, USA

•  S. Di Alesio et al., “Worst-Case Scheduling of Software Tasks – A Constraint
Optimization Model to Support Performance Testing, Constraint Programming (CP),
2014

•  S. Di Alesio er al. “Combining Genetic Algorithms and Constraint Programming to
Support Stress Testing”, ACM TOSEM, 25(1), 2015

Real-time, concurrent systems (RTCS)

•  Real-time, concurrent systems (RTCS) have
concurrent interdependent tasks which have
to finish before their deadlines

•  Some task properties depend on the
environment, some are design choices

•  Tasks can trigger other tasks, and can share
computational resources with other tasks

•  How can we determine whether tasks meet
their deadlines?

74

Problem

•  Schedulability analysis encompasses techniques
that try to predict whether all (critical) tasks are
schedulable, i.e., meet their deadlines

•  Stress testing runs carefully selected test cases
that have a high probability of leading to deadline
misses

•  Stress testing is complementary to schedulability
analysis

•  Testing is typically expensive, e.g., hardware in
the loop

•  Finding stress test cases is difficult

75

Finding Stress Test Cases is Difficult

76

0
1
2
3
4
5
6
7
8
9

j0, j1 , j2 arrive at at0 , at1 , at2 and must
finish before dl0 , dl1 , dl2

J1 can miss its deadline dl1 depending on
when at2 occurs!

0
1
2
3
4
5
6
7
8
9

j0 j1 j2 j0 j1 j2
at0

dl0

dl1

at1 dl2

at2

T

T

at0

dl0 dl1

at1
at2

dl2

Challenges and Solutions

•  Ranges for arrival times form a very large input space

•  Task interdependencies and properties constrain
what parts of the space are feasible

•  We re-expressed the problem as a constraint
optimisation problem

•  Constraint programming (e.g., IBM CPLEX)

 77

Context

78

Drivers
(Software-Hardware Interface)

Control Modules

Alarm Devices
(Hardware)

Multicore Architecture

Real-Time Operating System

System monitors gas leaks and fire in
oil extraction platforms

Constraint Optimization

79

Constraint Optimization Problem

Static Properties of Tasks
(Constants)

Dynamic Properties of Tasks
(Variables)

Performance Requirement
(Objective Function)

OS Scheduler Behaviour
(Constraints)

Process and Technologies

80

UML Modeling (e.g.,
MARTE)

Constraint Optimization

Optimization Problem
(Find arrival times that maximize the

chance of deadline misses)

System Platform

Solutions
(Task arrival times likely to

lead to deadline misses)

Deadline Misses
Analysis

System Design Design Model (Time
and Concurrency

Information)

INPUT

OUTPUT

Stress Test Cases

Constraint
Programming

(CP)

Challenges and Solutions

•  Scalability problem: Constraint programming (e.g.,
IBM CPLEX) cannot handle such large input spaces
(CPU, memory)

•  Solution: Combine metaheuristic search and
constraint programming
–  metaheuristic search (GA) identifies high risk

regions in the input space
–  constraint programming finds provably worst-case

schedules within these (limited) regions
–  Achieve (nearly) GA efficiency and CP

effectiveness

81

Combining GA and CP

82

A:12 S. Di Alesio et al.

Fig. 3: Overview of GA+CP: the solutions x1, y1 and z1 in the initial population of GA evolve into
x6, y6, and z6, then CP searches in their neighborhood for the optimal solutions x⇤, y⇤ and z

⇤.

in the schedule generated by the arrival times in x:

J

⇤
(x)

def
=

n

j 2 J

�

� 9k⇤ 2 K

j

⇤
(x) ·

�

deadline miss

j

⇤
,k

⇤
(x) � 0 _

8j 2 J, k 2 K

j

·

deadline miss

j

⇤
,k

⇤
(x) � deadline miss

j,k

(x)

�

o

— Union set I⇤ of impacting sets of tasks missing or closest to miss their deadlines. Let I⇤(x)
be the union of the impacting sets of tasks in J

⇤
(x):

I

⇤
(x)

def
=

[

j

⇤2J

⇤(x)

I

j

⇤
(x)

By definition, I⇤(x) contains all the tasks that can have an impact over a task that misses a
deadline or is closest to a deadline miss.

— Neighborhood ✏ of an arrival time and neighborhood size D. Let ✏(x
j,k

) be the interval
centered in the arrival time x

j,k

computed by GA, and let D be its radius: ✏(x
j,k

) = [x

j,k

�
D, x

j,k

+D]. ✏ defines the part of the search space around x

j,k

where to find arrival times that
are likely to break task deadlines. D is a parameter of the search.

— Constraint Model M implementing a Complete Search Strategy. Let M be the constraint
model defined in our previous work [Di Alesio et al. 2014] for the purpose of identifying ar-
rival times for tasks that are likely to lead to deadline misses scenarios. M models the static
and dynamic properties of the software system respectively as constants and variables, and the
scheduler of the operating system as a set of constraints among such variables. Note that M im-
plements a complete search strategy over the space of arrival times. This means that M searches
for arrival times of all aperiodic tasks within the whole interval T .

Our combined GA+CP strategy consists in the following two steps:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Process and Technologies

83

UML Modeling (e.g.,
MARTE)

Constraint Optimization

Optimization Problem
(Find arrival times that maximize the

chance of deadline misses)

System Platform

Solutions
(Task arrival times likely to

lead to deadline misses)

Deadline Misses
Analysis

System Design Design Model (Time
and Concurrency

Information)

INPUT

OUTPUT

Genetic
Algorithms

(GA)

Stress Test Cases

Constraint
Programming

(CP)

Environment-Based Testing
of Soft Real-Time Systems

References:

84

•  Z. Iqbal et al., “Empirical Investigation of Search Algorithms for Environment Model-
Based Testing of Real-Time Embedded Software”, ACM ISSTA, 2012

•  Z. Iqbal et al., “Environment Modeling and Simulation for Automated Testing of Soft
Real-Time Embedded Software”, Software and System Modeling (Springer), 2014

Objectives

•  Model-based system testing
–  Independent test team
–  Black-box
–  Environment models

85

Environment
Simulator

Test cases

Environment Models

Test oracle

Environment: Domain Model

86

Environment: Behavioral Model

87

Test Case Generation

•  Test objectives: Reach “error” states (critical environment
states)

•  Test Case: Simulation Configuration
–  Setting non-deterministic properties of the environment, e.g.,

speed of sorter’s left and right arms
•  Oracle: Reaching an “error” state
•  Metaheuristics: search for test cases getting to error state
•  Fitness functions

–  Distance from error state
–  Distance from satisfying guard conditions
–  Time distance
–  Time in “risky” states

88

Stress Testing focused on
Concurrency Faults

Reference:

89

M. Shousha et al., ”A UML/MARTE Model Analysis Method for
Uncovering Scenarios Leading to Starvation and Deadlocks in
Concurrent Systems”, IEEE Transactions on Software Engineering
38(2), 2012

Stress Testing of Distributed Systems

Reference:

90

V. Garousi et al., "Traffic-aware Stress Testing of Distributed Real-Time
Systems Based on UML Models using Genetic Algorithms", Journal of
Systems and Software (Elsevier), 81(2), 2008

91

Objective
Function

Search
Space

Search
Technique

n  Problem = fault model
n  Model = system or

environment
n  Search to optimize

objective function(s)
n  Metaheuristics,

constraint programming
n  Scalability: A small part

of the search space is
traversed

n  Model: Guidance to
worst case, high risk
scenarios across space

n  Reasonable modeling
effort based on
standards or extension

n  Heuristics: Extensive
empirical studies are
required

General Pattern: Using Metaheuristic Search

92

Objective
Function

Search
Space

Search
Technique

n  Simulation can be time
consuming

n  Makes the search
impractical or ineffective

n  Surrogate modeling
based on machine
learning

n  Simulator dedicated to
search

General Pattern: Using Metaheuristic Search

Simulator

Scalability

93

Project examples

•  Scalability is the most common verification challenge in
practice

•  Testing closed-loop controllers, vision system
–  Large input and configuration space
–  Smart heuristics to avoid simulations (machine

learning)
•  Schedulability analysis and stress testing

–  Large space of possible arrival times
–  Constraint programming cannot scale by itself
–  CP was carefully combined with genetic algorithms

94

Scalability: Lessons Learned

•  Scalability must be part of the problem definition and
solution from the start, not a refinement or an after-thought

•  Meta-heuristic search, by necessity, has been an essential
part of the solutions, along with, in some cases, machine
learning, statistics, etc.

•  Scalability often leads to solutions that offer “best
answers” within time constraints, but no guarantees

•  Scalability analysis should be a component of every
research project – otherwise it is unlikely to be adopted in
practice

•  How many papers research papers do include even a
minimal form of scalability analysis?

95

Practicality

96

Project examples

•  Practicality requires to account for the domain and context

•  Testing controllers
–  Relies on Simulink only
–  No additional modeling or complex translation
–  Within domains, differences have huge implications in terms

of applicability (open versus closed loop controllers)
•  Minimizing risks of CPU shortage

–  Trade-off between between effective synchronisation and
CPU usage

–  Trade-off achieved through multiple-objective GA search and
appropriate decision tool

•  Schedulability analysis and stress testing
–  Near deadline misses must also be identified

97

Practicality: Lessons Learned

•  In software engineering, and verification in particular,
just understanding the real problems in context is
difficult

•  What are the inputs required by the proposed
technique?

•  How does it fit in development practices?
•  Is the output what engineers require to make

decisions?
•  There is no unique solution to a problem as they tend

to be context dependent, but a context is rarely
unique and often representative of a domain or type
of system

98

Discussion

•  Metaheuristic search for verification
–  Tends to be versatile, tailorable to new problems and

contexts
–  Can cope with the verification of continuous behavior
–  Entails acceptable modeling requirements
–  Can provide “best” answers at any time
–  Scalable, practical
But
–  Not a proof, no certainty
–  Effectiveness of search guidance is key and must be

experimented and evaluated
–  Models are key to provide adequate guidance
–  Search must often be combined with other techniques, e.g.,

machine learning

99

Discussion II

•  Constraint solvers (e.g., Comet, ILOG CPLEX, SICStus)
–  Is there an efficient constraint model for the problem at hand?
–  Can effective heuristics be found to order the search?
–  Better if there is a match to a known standard problem, e.g., job

shop scheduling
–  Tend to be strongly affected by small changes in the problem, e.g.,

allowing task pre-emption
–  Often not scalable, e.g., memory

•  Model checking
–  Detailed operational models (e.g., state models), involving

(complex) temporal properties (e.g., CTL)
–  Enough details to analyze statically or execute symbolically
–  These modeling requirements are usually not realistic in actual

system development. State explosion problem.
–  Originally designed for checking temporal properties through

reachability analysis, as opposed to explicit timing properties
–  Often not scalable

100

Talk Summary

•  Focus: Meta-heuristic Search to enable scalable
verification and testing.

•  Scalability is the main challenge in practice.
•  We drew lessons learned from example projects in

collaboration with industry, on real systems and in real
verification contexts.

•  Results show that meta-heuristic search contributes to
mitigate the scalability problem.

•  It has also shown to lead to applicable solutions in
practice.

•  Solutions are very context dependent.
•  Solutions tend to be multidisciplinary: system modeling,

constraint solving, machine learning, statistics.
101

Making Model-Driven Verification Practical
and Scalable - Experiences and Lessons

Learned

Lionel Briand

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

MODELSWARD, Rome, February 20, 2016

SVV lab: svv.lu
SnT: www.securityandtrust.lu

