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Verification, Testing 

•  The term “verification” is used in its wider sense: Defect 
detection. 

•  Testing is, in practice, the most common verification 
technique. 

•  Testing is about systematically, and preferably 
automatically, exercise a system such as to maximize 
chances of uncovering (important) latent faults within time 
constraints.  

•  Other forms of verifications are important too (e.g., design 
time, run-time), but much less present in practice.  

 
•  Decades of research have not yet significantly and widely 

impacted engineering practice. 
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Cyber-Physical Systems: Challenges 

•  Increasingly complex and critical 
systems 

•  Complex environment  
•  Hybrid discrete and continuous 

behavior 
•  Combinatorial and state 

explosion 
•  Complex requirements, e.g., 

temporal, timing, resource 
usage 

•  Uncertainty, e.g., about the 
environment  
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Scalable? Practical?  

•  Scalable: Can a technique be applied on large 
artifacts (e.g., models, data sets, input spaces) and 
still provide useful support within reasonable effort, 
CPU and memory resources? 

•  Practical: Can a technique be efficiently and 
effectively applied by engineers in realistic 
conditions?  
–  realistic ≠ universal 
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Focus 

•  Formal Verification (Wikipedia): In the context of 
hardware and software systems, formal 
verification is the act of proving or disproving the 
correctness of intended algorithms underlying a 
system with respect to a certain formal specification 
or property, using formal methods of mathematics. 

•  Our focus: How can we, in a practical, effective and 
efficient manner, uncover as many (critical) faults as 
possible in software systems, within time 
constraints, while scaling to artifacts of realistic 
size.  
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Metaheuristics 

 
•  Heuristic search (Metaheuristics): Hill climbing, Tabu 

search, Simulated Annealing, Genetic algorithms, Ant 
colony optimisation …. 

 
•  Stochastic optimization: General class of algorithms 

and techniques which employ some degree of 
randomness to find optimal (or as optimal as 
possible) solutions to hard problems 

•  Many verification and testing problems can be re-
expressed as (hard) optimization problems 
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Talk Outline 

•  Selected project examples, with industry 
collaborations 
 

•  Similarities and patterns 

•  Lessons learned 
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Testing Software Controllers 
  

References:  
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Dynamic Continuous Controllers 
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Electronic Control Units (ECUs) 

More functions 

Comfort and variety 

Safety and reliability 

Faster time-to-market 

Less fuel consumption 

Greenhouse gas emission laws 
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A Taxonomy of Automotive Functions 

Controlling Computation 

State-Based Continuous Transforming Calculating 

unit convertors calculating positions,  
duty cycles, etc  

State machine 
controllers 

Closed-loop 
controllers (PID) 

Different testing strategies are required for 
different types of functions 
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Development Process 
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Hardware-in-the-Loop 
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Model-in-the-Loop  
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Simulink Modeling

 Generic 
Functional
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Software-in-the-Loop 
Stage

Code Generation
and Integration
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MATLAB/Simulink model 

Fibonacci sequence: 1,1,2,3,5,8,13,21,… 
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Controller Input and Output at MIL 
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Controllers at MIL 
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Requirements and Test Objectives 
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Test Strategy: A Search-Based Approach 

18 

Initial Desired (ID) 

Fi
na

l D
es

ire
d 

(F
D

) 

Worst Case(s)? 

•  Continuous behavior 
•  Controller’s behavior can 

be complex 
•  Meta-heuristic search in 

(large) input space: 
Finding worst case inputs 

•  Possible because of 
automated oracle 
(feedback loop) 

•  Different worst cases for 
different requirements 

•  Worst cases may or may 
not violate requirements 

 



Smoothness Objective Functions: OSmoothness 

Test Case A Test Case B 

OSmoothness(Test Case A) > OSmoothness(Test Case B)  

We want to find test scenarios which maximize OSmoothness 
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Search Elements 

•  Search Space: 
•  Initial and desired values, configuration parameters 

•  Search Technique: 
•  (1+1) EA, variants of hill climbing, GAs … 

•  Search Objective:  
•  Objective/fitness function for each requirement 

•  Evaluation of Solutions 
•  Simulation of Simulink model => fitness computation 

 

•  Result:  
•  Worst case scenarios or values to the input variables that (are 
more likely to) break the requirement at MiL level 
•  Stress test cases based on actual hardware (HiL)  
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Solution Overview (Simplified Version) 
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Automotive Example 

•  Supercharger bypass flap controller 
ü Flap position is bounded within [0..1] 
ü Implemented in MATLAB/Simulink 
ü 34 sub-components decomposed into  6 

abstraction levels 
ü The simulation time T=2 seconds 

Supercharger

Bypass Flap

Supercharger

Bypass Flap

Flap position = 0 (open) Flap position = 1 (closed) 
22 



Finding Seeded Faults 
Inject Fault 
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Analysis – Fitness increase over iterations 
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Analysis II – Search over different regions 
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•  We found much worse scenarios during MiL testing than our 
partner had found so far, and much worse than random 
search (baseline) 

•  These scenarios are also run at the HiL level, where testing is 
much more expensive: MiL results -> test selection for HiL 

•  But further research was needed: 
–  Simulations are expensive  
–  Configuration parameters   
–  Dynamically adjust search algorithms in different 

subregions (exploratory <-> exploitative) 

Conclusions 

i.e., 31s. Hence, the horizontal axis of the diagrams in Figure 8 shows the number of
iterations instead of the computation time. In addition, we start both random search and
(1+1) EA from the same initial point, i.e., the worst case from the exploration step.

Overall in all the regions, (1+1) EA eventually reaches its plateau at a value higher
than the random search plateau value. Further, (1+1) EA is more deterministic than ran-
dom, i.e., the distribution of (1+1) EA has a smaller variance than that of random search,
especially when reaching the plateau (see Figure 8). In some regions (e.g., Figure 8(d)),
however, random reaches its plateau slightly faster than (1+1) EA, while in some other
regions (e.g. Figure 8(a)), (1+1) EA is faster. We will discuss the relationship between
the region landscape and the performance of (1+1) EA in RQ3.
RQ3. We drew the landscape for the 11 regions in our experiment. For example, Fig-
ure 9 shows the landscape for two selected regions in Figures 7(a) and 7(b). Specifically,
Figure 9(a) shows the landscape for the region in Figure 7(b) where (1+1) EA is faster
than random, and Figure 9(b) shows the landscape for the region in Figure 7(a) where
(1+1) EA is slower than random search.
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Fig. 9. Diagrams representing the landscape for two representative HeatMap regions: (a) Land-
scape for the region in Figure 7(b). (b) Landscape for the region in Figure 7(a).

Our observations show that the regions surrounded mostly by dark shaded regions
typically have a clear gradient between the initial point of the search and the worst case
point (see e.g., Figure 9(a)). However, dark regions located in a generally light shaded
area have a noisier shape with several local optimum (see e.g., Figure 9(b)). It is known
that for regions like Figure 9(a), exploitative search works best, while for those like Fig-
ure 9(b), explorative search is most suitable [10]. This is confirmed in our work where
for Figure 9(a), our exploitative search, i.e., (1+1) EA with � = 0.01, is faster and more
effective than random search, whereas for Figure 9(b), our search is slower than random
search. We applied a more explorative version of (1+1) EA where we let � = 0.03 to the
region in Figure 9(b). The result (Figure 10) shows that the more explorative (1+1) EA
is now both faster and more effective than random search. We conjecture that, from the
HeatMap diagrams, we can predict which search algorithm to use for the single-state
search step. Specifically, for dark regions surrounded by dark shaded areas, we suggest
an exploitative (1+1) EA (e.g., � = 0.01), while for dark regions located in light shaded
areas, we recommend a more explorative (1+1) EA (e.g., � = 0.03).

6 Related Work
Testing continuous control systems presents a number of challenges, and is not yet sup-
ported by existing tools and techniques [4, 1, 3]. The modeling languages that have been

13
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Testing in the Configuration Space 

•  MIL testing for all feasible configurations 
 
•  The search space is much larger 

•  The search is much slower (Simulations of Simulink 
models are expensive) 

•  Results are harder to visualize 

•  Not all configuration parameters matter for all 
objective functions 
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Modified Process and Technology 
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Dimensionality Reduction 

•  Sensitivity Analysis: 
Elementary Effect Analysis 
(EEA) 

•  Identify non-influential 
inputs in computationally 
costly mathematical 
models 

•  Requires less data points 
than other techniques 

•  Observations are 
simulations generated 
during the Exploration step 

•  Compute sample mean 
and standard deviation for 
each dimension of the 
distribution of elementary 
effects 
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Elementary Effects Analysis Method 

ü  Imagine function F with 2 inputs, x and y: 

A �
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… 
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… 
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Visualization in Inputs & Configuration Space 
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Surrogate Modeling (1) 

•  Goal: To predict the value of the objective functions within a 
critical partition, given a number of observations, and use that to 
avoid as many simulations as possible and speed up the search 
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Surrogate Modeling (2) 
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•  Any supervised learning or 
statistical technique 
providing fitness predictions 
with confidence intervals 

1.  Predict higher fitness with 
high confidence: Move to 
new position, no simulation 

2.  Predict lower fitness with 
high confidence: Do not 
move to new position, no 
simulation 

3.  Low confidence in 
prediction: Simulation 

 

Surrogate Model 

Real Function 

x 

Fitness 



Experiments Results (RQ1) 

ü  The best regression technique to build Surrogate models 
for all of our three objective functions is Polynomial 
Regression with n = 3 
ü Other supervised learning techniques, such as SVM  

 
Mean of R2/MRPE values for different surrogate modeling techniques  
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Experiments Results (RQ2) 

ü Dimensionality reduction helps generate better surrogate 
models for Smoothness and Responsiveness 
requirements 
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ü  For responsiveness, the search with SM was 8 times faster 

ü  For smoothness, the search with SM was much more effective 

Experiments Results (RQ3) 
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ü Our approach is able to identify critical violations of the 
controller requirements that had neither been found by 
our earlier work nor by manual testing.  

MiL-Testing 
different configurations

Stability

Smoothness

Responsiveness

MiL-Testing 
fixed configurations Manual MiL-Testing

- -2.2% deviation 

24% over/undershoot 20% over/undershoot 5% over/undershoot 

170 ms response time 80 ms response time 50 ms response time

Experiments Results (RQ4) 
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A Taxonomy of Automotive Functions 

Controlling Computation 

State-Based Continuous Transforming Calculating 

unit convertors calculating positions,  
duty cycles, etc  

State machine 
controllers 

Closed-loop 
controllers (PID) 

Different testing strategies are required for 
different types of functions 
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Differences with Close-Loop Controllers  

39 

respectively. In addition, we adapt the whitebox coverage and the
blackbox output diversity selection criteria to Stateflows, and evalu-
ate their fault revealing power for continuous behaviours. Coverage
criteria are prevalent in software testing and have been considered
in many studies related to test suite effectiveness in different appli-
cation domains [?]. In our work, we consider state and transition
coverage criteria [?] for Statflows. Our output diversity criterion is
based on the recent output uniqueness criterion [?] that has been
studied for web applications and has shown to be a useful surro-
gate to whitebox selection techniques. We consider this criterion
in our work because Stateflows have complex internal structures
consisting of differential equations, making them less amenable to
whitebox techniques, while they have rich time-continuous outputs.

In this paper, we make the following contributions:

• We focus on the problem of testing Stateflows with mixed
discrete-continuous behaviours. We propose two new test
case selection criteria output stability and output continuity
with the goal of selecting test inputs that are likely to pro-
duce continuous outputs exhibiting instability and disconti-
nuity failures, respectively.

• We adapt the whitebox coverage and the blackbox output
diversity selection criteria to Stateflows, and evaluate their
fault revealing power for continuous behaviours. The former
is defined based on traditional state and transition coverage
for state machines, and the latter is defined based on the re-
cent output uniqueness criterion [?].

• We evaluate effectiveness of our newly proposed and the
adapted selection criteria by applying them to three Stateflow
case study models: two industrial and one public domain.
Our results show that RESULT.

Organization of the paper.

2. BACKGROUND AND MOTIVATION
Motivating example. We motivate our work using a simplified
Stateflow from the automotive domain which controls a supercharger
clutch and is referred to as the Supercharger Clutch Controller (SCC).
Figure 1(a) represents the discrete behaviour of SCC specifying
that the supercharger clutch can be in two quiescent states [?]: en-
gaged or disengaged. Further, the clutch moves from the disen-
gaged to the engaged state whenever both the engine speed engspd
and the engine coolant temperature tmp respectively fall inside the
specified ranges of [smin..smax] and [tmin..tmax]. The clutch
moves back from the engaged to the disengaged state whenever
either the speed or the temperature falls outside their respective
ranges. The variable ctrlSig in Figure 1(a) indicates the sign and
magnitude of the voltage applied to the DC motor of the clutch
to physically move the clutch between engaged and disengaged
positions. Assigning 1.0 to ctrlSig moves the clutch to the en-
gaged position, and assigning �1.0 to ctrlSig moves it back to
the disengaged position. To avoid clutter in our figures, we use
engageReq to refer to the condition on the Disengaged ! En-
gaged transition, and disengageReq to refer to the condition on
the Engaged ! Disengaged transition.

The discrete transition system in Figure 1(a) assumes that the
clutch movement takes no time, and further, does not provide any
insight on the quality of movement of the clutch. Figure 1(b) ex-
tends the discrete transition system in Figure 1(a) by adding a timer
variable, i.e., time, to explicate the passage of time in the SCC
behaviour. The new transition system in Figure 1(b) includes two

(a) SCC -- Discrete Behaviour

(b) SCC -- Timed Behaviour

EngagedDisengaged

Engaging

(c) Engaging state of SCC -- mixed discrete-continuous behaviour

Disengaging

Disengaged

Engaged

time + +;

[disengageReq]/time := 0

[t
i
m
e

>
5]

[t
i
m
e

>
5]

time + +;

[(engspd > smin � engspd < smax) � (tmp > tmin � tmp < tmax)]/
ctrlSig := 1

[engageReq]/ time := 0

[¬(engspd > smin � engspd < smax) � ¬(tmp > tmin � tmp < tmax)] /
ctrlSig := �1

OnMoving OnSlipping

OnCompleted

time + +;
ctrlSig := f(time)

Engaging

time + +;
ctrlSig := g(time)

time + +;
ctrlSig := 1.0

[¬(vehspd = 0) �
time > 2]

[(vehspd = 0) �
time > 3]

[time > 4]

Figure 1: Supercharge Clutch Controller (SCC) Stateflow.

transient states [?], engaging and disengaging, specifying that mov-
ing from the engaged to the disengaged state and vice versa takes
six milisec. Since this model is simplified, it does not show han-
dling of alterations of the clutch state during the transient states.
In addition to adding the time variable, we note that the variable
ctrlSig, which controls physical movement of the clutch, cannot
abruptly jump from 1.0 to �1.0, or vice versa. In order to ensure
safe and smooth movement of the clutch, the variable ctrlSig has
to gradually move between 1.0 and �1.0 and be described as a
function over time, i.e., a signal. To express the evolution of the
ctrlSig signal over time, we decompose the transient states en-
gaging and disengaging into sub-state machines. Figure 1(c) shows
the sub-state machine related to the engaging state. The one related
to the disengaging state is similar. At beginning (in state OnMov-
ing), the function ctrlSig has a steep grade (i.e., function f ) to
move the stationary clutch from the disengaged state and acceler-
ate it to reach a certain speed in about two milisec. Afterwards (in
state OnSlipping), ctrlSig decreases the speed of clutch based
on the gradual function g until about four milisec. This is to ensure
that the clutch slows down as it gets closer to the crank shaft of
the car. Finally, at state OnCompleted, ctrlSig reaches value 1.0
and remains constant, causing the clutch to get engaged in about
one milisec. When the car is stationary, i.e., vehspd is 0, the clutch
moves based on the steep grade function f for three milisec, and
does not have to go to the OnSlipping phase to slow down before
it reaches the crank shaft at state OnCompleted.
Input and Output. The Stateflow inputs and outputs are signals
(functions over time). Each input/output signal has a data type,
e.g. boolean, enum or float, specifying the range of the signal.
For example, Figure 2 shows an example input (dashed line) and
output (solid line) signals for SCC. The input signal is related to
engageReq and is boolean, while the output signal is related to

•  Mixed discrete-continuous 
behavior: Simulink stateflows 

•  Much quicker simulation time 

•  No feedback loop -> no 
automated oracle 

•  The main testing cost is the 
manual analysis of output signals 

•  Goal: Minimize test suites 

•  Challenge: Test selection 

•  Entirely different approach to 
testing 

On

Off

CtrlSig



Selection Strategies Based on Search 

•  Input diversity 
•  White-box Structural 

Coverage 
•  State Coverage 
•  Transition Coverage 

•  Output Diversity 
•  Failure-Based Selection 

Criteria  
•  Domain specific failure 

patterns 
•  Output Stability 
•  Output Continuity 
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Failure-based Test Generation  

4
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•  Maximizing the likelihood of presence of specific failure patterns 
in output signals 

•  Failure patterns elicited from engineers 
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Summary of Results 

•  The test cases resulting from  state/transition 
coverage algorithms cover the faulty parts of 
the models 

•  However, they fail to generate output signals 
that are sufficiently distinct from the oracle 
signal, hence yielding a low fault revealing 
rate  

•  Output-based algorithms are more effective 
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Automated Testing of Vision Systems 
Through Simulation 
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•  With Raja Ben Abdessalem, Shiva Nejati  
•  In collaboration with IEE, Luxembourg 

 



Night Vision (NiVi) System 
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•  The NiVi system is a camera-based 
assistance system providing improved 
vision at night 



Testing Vision Systems 

•  Testing vision systems requires complex and 
comprehensive simulation environments 
–  Static objects: roads, weather, etc. 
–  Dynamic objects: cars, humans, animals, etc. 

•  A simulation environment captures the behaviour of 
dynamic objects as well as constraints and 
relationships between dynamic and static objects  
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Generation of Test  
specifications
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test case specification

Overview 
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Specification Documents 
(Simulation Environment and NiVi System) 
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NiVi and Environment Domain Model 
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Underlays 

Nature 
Element

Human

Car/Motor/
Truck/Bus

(+NiVi)

Animal
Dirt Spot 

Road

Buildings

Abstract 
Buildings

TrafficSign

Animated 
Element

Trajectory*

1



Requirements Model 
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<<trace>> <<trace>> 

 
     
 

Speed 
Profile

Path
1 1

Slot Path 
Segment

1..**
1

Trajectory Human
1*

trajectory

Warning
Sensors posx1, posx2

posy1, posy2

AWACar/Motor/
Truck/Bus

sensor
has

has
awa

1
1

1

*

human
appears

posx1 posx2 

posy1 

posy2 

The NiVi system shall detect any person 
located in the Acute Warning Area of a vehicle



MiL Testing via Search 
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Simulator + NiVi 

Environment 
Settings 
(Roads, weather, 
vehicle type, etc.) 

Fixed during Search Manipulated by Search 

Human Simulator 
(initial position, 

speed, orientation) 

Car Simulator 
(speed) 
 

NiVi 

Meta-heuristic Search 
(multi-objective) 

Generate 
scenarios 

Detection 
or not? 

Collision  
or not? 



5
0

Type of Road Type of vehicle Type of actor 
Situation 1 Straight  Car Male 
Situation 2 Straight Car Child 
Situation 3 Straight Car Cow 
Situation 4 Straight Truck Male 
Situation 5 Straight Truck Child 
Situation 6 Straight Truck Cow 
Situation 7 Curved Car Male 
Situation 8 Curved Car Child 
Situation 9 Curved Car Cow 
Situation 10 Curved Truck Male 
Situation 11 Curved Truck Child 
Situation 12 Curved Track Cow 
Situation 13 Ramp Car Male 
Situation 14 Ramp Car Child 
Situation 15 Ramp Car Cow 
Situation 16 Ramp Truck Male 
Situation 17 Ramp Truck Child 
Situation 18 Ramp Truck Cow 
Situation 19 
Situation 20 

Straight Car+ Cars in parking 
Car + buildings 

Male 

Test Case Specification: Static 
(combinatorial) 



Test Case Specification: Dynamic 

51 

Start locationX = 74
Start locationY = 37.72
Start locationZ = 0
Orientation = 0

trajectoryPerson : TrajectoryPositionX= 74
Position Y= 37.72
Position Z = 0
OrientationHeading = 93.33
Acceleration = 0
MaxWalkingSpeed =14
height=1.75

person :Actor

UniqueId

profilePerson : 
Speed Profile

StartPointX = 74
StartPointY = 37.72
StartPointY = 0
StartAngle = 93.33
End Angle = 0
Length = 60

pathPerson : Path

Length = 60
Type = Straight
MaxSpeedLimit = 14

segmentPerson : Path Segment

ID
slotPerson : Slot

Time = 0
Speed = 12.59 

startPerson : 
StartState

Start locationX = 10
Start locationY = 50.125
Start locationZ = 0.56
Orientation = 0

trajectoryCar : TrajectoryPositionX=10
Position Y= 50.125
Position Z = 0.56
OrientationHeading = 0
Acceleration = 0
MaxWalkingSpeed =100

car : Actor

UniqueId

profileCar : Speed 
Profile

StartPointX = 10
StartPointY = 50.125
StartPointZ =0.56
StartAngle = 0
End Angle = 0
Length = 100

pathCar : Path

Length = 100
Type = Straight
MaxSpeedLimit = 100

segmentCar : Path Segment

ID
slotCar : Slot

Time = 0
Speed = 60.66 

startCar : 
StartState

MinTTC=0.3191
Collision



Multi-Objective Search 

•  Objective functions:  
–   Distance to Car “D(P/Car)”, Time To 

Collision “TTC”, and Distance to AWA 
“D(P/AWA)” 

•  The goal is to identify scenarios that 
minimize our three objectives at the same 
times in different environment situations 

•  Identify automatically most important 
risky environment situations 
–   e.g., ramped roads, curved roads, 

blocked field of views, and animal as 
the object to detect 

•  Challenge: Simulation time => surrogate 
modeling? 

•  Found many failures in NiVi 
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Minimizing CPU Shortage Risks 
During Integration  

 
References:  
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Automotive: Distributed Development 
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Software Integration 
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•  Develop software optimized for 
their specific hardware 

 
•  Provide part suppliers with 

runnables (exe) 
 

•  Integrate car makers software 
with their own platform 

•  Deploy final software on ECUs 
and send them to car makers   

Car Makers Part Suppliers 

Stakeholders 
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•  Objective: Effective execution and 
synchronization of runnables 

•  Some runnables should execute 
simultaneously or in a certain order 

•  Objective: Effective usage of 
CPU time 

 
•  Max CPU time used by all the 

runnables should remain as low 
as possible over time 

Car Makers Part Suppliers 

Different Objectives 
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An overview of an integration process in the  
automotive domain 

AUTOSAR Models 
sw runnables 

sw runnables AUTOSAR Models 

Glue 
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CPU time shortage 

•  Static cyclic scheduling: predictable, analyzable 
•  Challenge 

–  Many OS tasks and their many runnables run within a limited 
available CPU time  

•  The execution time of the runnables may exceed their time slot 

•  Goal 
–  Reducing the maximum CPU time used per time slot to be 

able to 
•  Minimize the hardware cost 
•  Reduce the probability of overloading the CPU in practice 
•  Enable addition of new functions incrementally  
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5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 

✗ 

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 
✔ 

(a)

(b)

Fig. 4. Two possible CPU time usage simulations for an OS task with a 5ms
cycle: (a) Usage with bursts, and (b) Desirable usage.

its corresponding glue code starts by a set of declarations
and definitions for components, runnables, ports, etc. It then
includes the initialization part followed by the execution part.
In the execution part, there is one routine for each OS task.
These routines are called by the scheduler of the underlying
OS in every cycle of their corresponding task. Inside each
OS task routine, the runnables related to that OS task are
called based on their period. For example, in Figure 3, we
assume that the cycle of the task o1 is 5ms, and the period
of the runnables r1, r2, and r3 are 10ms, 20ms and 100ms,
respectively. The value of timer is the global system time. Since
the cycle of o1 is 5, the value of timer in the Task o1() routine
is always a multiple of 5. Runnables r1, r2 and r3 are then
called whenever the value of timer is zero, or is divisible by
the period of r1, r2 and r3, respectively.

Although AUTOSAR provides a standard means for OEMs
and suppliers to exchange their software, and essentially
enables the process in Figure 1, the automotive integration
process still remains complex and erroneous. A major inte-
gration challenge is to minimize the risk of CPU shortage
while running the integrated system in Figure 1. Specifically,
consider an OS task with a 5ms cycle. Figure 4 shows two
possible CPU time usage simulations of this task over eight
time slots between 0 to 40ms. In Figure 4(a), there are bursts
of high CPU usage at two time slots at 0ms and 35ms, while
the CPU usage simulation in Figure 4(b) is more stable and
does not include any bursts. In both simulations, the total
CPU usage is the same, but the distribution of the CPU usage
over time slots is different. The simulation in Figure 4(b) is
more desirable because: (1) It minimizes the hardware costs
by lowering the maximum required CPU time. (2) It facilitates
the assignment of new runnables to an OS task, and hence,
enables the addition of new functions as it is typically done in
the incremental design of car manufacturers. (3) It reduces the
possibility of overloading CPU as the CPU time usage is less
likely to exceed the OS task cycle (i.e., 5ms) in any time slot.
Ideally, a CPU usage simulation is desirable if in each time
slot, there is a sufficiently large safety margin of unused CPU
time. Due to inaccuracies in estimating runnables’ execution
times, it is expected that the unused margin shrinks when the
system runs in a real car. Hence, the larger is this margin, the
lower is the probability of exceeding the limit in practice.

In this paper, we study the problem of minimizing bursts
of CPU time usage for a software system composed of a
large number of concurrent runnables. A known strategy to
eliminate high CPU usage bursts is to shift the start time
(offset) of runnables, i.e., to insert a delay prior to the start of
the execution of runnables [5]. Offsets of the runnables must
satisfy three constraints: C1. The offset values should not lead

to deadline misses, i.e., they should not cause the runnables to
run passed their periods. C2. Since the runnables are invoked
by OS tasks, the offset values of each runnable should be
divisible by the OS task cycle related to that runnable. C3. The
offset values should not interfere with data dependency and
synchronization relations between runnables. For example,
suppose runnables r1 and r2 have to execute in the same time
slot because they need to synchronize. The offset values of r1
and r2 should be chosen such that they still run in the same
time slot after being shifted by their offsets.

There are four important context factors that are in line with
AUTOSAR [13], and have influenced our work:

CF1. The runnables are not memory-bound, i.e., the CPU
time is not significantly affected by the low-bound memory
allocation activities such as transferring data in and out of
the disk and garbage collection. Hence, our analysis of CPU
time usage is not affected by constraints related to memory
resources (see Section III-B).

CF2. The runnables are Offset-free [4], that is the offset of
a runnable can be freely chosen as long as it does not violate
the timing constraints C1-C3 (see Section III-B).

CF3. The runnables assigned to different OS tasks are
independent in the sense that they do not communicate with
one another and do not share memory. Hence, the CPU time
used by an OS task during each cycle is not affected by other
OS tasks running concurrently. Our analysis in this paper,
therefore, focuses on individual OS tasks.

CF4. The execution times of the runnables are remarkably
smaller than the runnables’ periods and the OS task cycles.
Typical OS task cycles are around 1ms to 5ms. The runnables’
periods are typically between 10ms to 1s, while the runnables’
execution times are between 10ns = 10�5ms to 0.2ms.

Our goal is to compute offsets for runnables such that the
CPU usage is minimized, and further, the timing constraints,
C1-C3, discussed earlier above hold. This requires solving
a constraint-based optimization problem, and can be done in
three ways: (1) Attempting to predict optimal offsets in a de-
terministic way, e.g., algorithms based on real-time scheduling
theory [6]. In general, these algorithms explore a very small
part of the search space, i.e., worst/best case situations only
(see Section V for a discussion). (2) Formulating the problem
as a (symbolic) constraint model and applying a systematic
constraint solver [14], [15]. Due to assumption CF4 above,
the search space in our problem is too large, resulting in
a huge constraint model that does not fit in memory (see
Section V for more details). (3) Using metaheuristic search-
based techniques [9]. These techniques are part of the general
class of stochastic optimization algorithms which employ
some degree of randomness to find optimal (or as optimal
as possible) solutions to hard problems. These approaches are
applied to a wide range of problems, and are used in this paper.

III. SEARCH-BASED CPU USAGE MINIMIZATION

In this section, we describe our search-based technique for
CPU usage minimization. We first define a notation for our
problem in Section III-A. We formalize the timing constraints,
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Using runnable offsets (delay times) 

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms ✗ 

✔ 

Inserting runnables’ offsets 

Offsets have to be chosen such that 
the maximum CPU usage per time slot is minimized, and further, 

 the runnables respect their period 
 the runnables respect their time slot 
 the runnables satisfy their synchronization constraints 
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5.34ms 5.34ms
5 ms
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CPU time usage exceeds the size of the slot (5ms)

Without optimization 
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CPU time usage always remains less than 2.13ms, so 
more than half of each slot is guaranteed to be free 


2.13ms

5 ms

Time

C
PU

 ti
m

e 
us

ag
e 

(m
s)

With Optimization 
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Single-objective Search algorithms  
 Hill Climbing and Tabu Search and their variations 

 
Solution Representation 

 a vector of offset values: o0=0, o1=5, o2=5, o3=0 

 
 
Tweak operator 

 o0=0, o1=5, o2=5, o3=0  à   o0=0, o1=5, o2=10, o3=0  

 
Synchronization Constraints 

 offset values are modified to satisfy constraints  

 Fitness Function 
 max CPU time usage per time slot 
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Summary of Problem and Solution 


Optimization


while satisfying synchronization/
temporal constraints


Explicit Time 

Model
for real-time embedded systems


Search


meta-heuristic single objective 
search algorithms


10^27


an industrial case study with a 
large search space


 64 



65 

Search Solution and Results 

Case Study: an automotive software system with 430 runnables, 
search space = 10^27 

Running the system without offsets 

Simulation for the runnables in our case study and
corresponding to the lowest max CPU usage found by HC

5.34 ms 

Optimized offset assignment 

2.13 ms 

-  The objective function is the max CPU usage of a 2s-simulation of 
runnables 

-  The search modifies one offset at a time, and updates other offsets 
only if timing constraints are violated 

-  Single-state search algorithms for discrete spaces (HC, Tabu) 
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Comparing different search algorithms  

(m
s)

(s
)

Best CPU usage

Time to find 
Best CPU usage
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Comparing our best search algorithm with 
random search 

(a) (b) (c)(a)

Lowest max CPU usage values computed by HC within 70 ms
over 100 different runs

Lowest max CPU usage values computed by Random 
within 70 ms over 100 different runs

Comparing average behavior of Random and HC in computing
lowest max CPU usage values within 70 s and over 100 different runs
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HC Random Average 



0ms 5ms 10ms 15ms 20ms 25ms 30ms

0ms 5ms 10ms 15ms 20ms 25ms 30ms

0ms 5ms 10ms 15ms 20ms 25ms 30ms
4ms 

3ms 

2ms 

Car Makers Part Suppliers r0 r1 r2 r3

Minimize CPU time usage

1 slot 

2 slots 

3 slots 

Execute r0 to r3 close to one another.

Trade-off between Objectives 
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Trade-off curve 
# 

of
 s

lo
ts 

CPU time usage (ms) 2.041.45

12

21

14

1.56

1

2
3

Boundary Trade Offs 

Interesting 
Solutions 
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Multi-objective search 

•  Multi-objective genetic algorithms (NSGA II) 
•  Pareto optimality 
•  Supporting decision making and negotiation between 

stakeholders 
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Report: GraphRandom-NSGAII-25 Page 1 of 2

CPU Time Usage-NSGAII & CPU Time Usage-Random vs. Number 
of Slots-NSGAII & Number of Slots-Random

Number of Slots-NSGAII & Number of Slots-Random
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Objectives:  
•  (1) Max CPU time  
•  (2) Maximum time 

slots between 
“dependent” tasks  



Input.csv: 
-  runnables 
-  Periods 
-  CETs 
-  Groups 
-  # of slots per 

groups 

Search 
A list of solutions: 
-  objective 1 (CPU usage) 
-  objective 2 (# of slots) 
-  vector of group slots 
-  vector of offsets 

Visualization/ 
Query Analysis 
 

-  Visualize solutions 
-  Retrieve/visualize  

simulations 
-  Visualize Pareto Fronts 
-  Apply queries to the  

solutions 

Trade-Off Analysis Tool 
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Conclusions 

-  Search algorithms to compute 
offset values that reduce the 
max CPU time needed 

-  Generate reasonably good 
results for a large automotive 
system and in a small amount of 
time  

-  Used multi-objective search à 
tool for establishing trade-off 
between relaxing 
synchronization constraints and 
maximum CPU time usage 
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Schedulability Analysis and Stress 
Testing  
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Real-time, concurrent systems (RTCS) 

•  Real-time, concurrent systems (RTCS) have 
concurrent interdependent tasks which have 
to finish before their deadlines 

•  Some task properties depend on the 
environment, some are design choices 

•  Tasks can trigger other tasks, and can share 
computational resources with other tasks 

•  How can we determine whether tasks meet 
their deadlines? 
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Problem 

•  Schedulability analysis encompasses techniques 
that try to predict whether all (critical) tasks are 
schedulable, i.e., meet their deadlines 

•  Stress testing runs carefully selected test cases 
that have a high probability of leading to deadline 
misses 

•  Stress testing is complementary to schedulability 
analysis 

•  Testing is typically expensive, e.g., hardware in 
the loop 

•  Finding stress test cases is difficult 
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Finding Stress Test Cases is Difficult 
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0
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j0, j1 , j2 arrive at at0 , at1 , at2  and must 
finish before dl0 , dl1 , dl2 

J1 can miss its deadline dl1 depending on 
when at2 occurs! 
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Challenges and Solutions 

•  Ranges for arrival times form a very large input space 

•  Task interdependencies and properties constrain 
what parts of the space are feasible 

•  We re-expressed the problem as a constraint 
optimisation problem 

•  Constraint programming (e.g., IBM CPLEX) 
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Context 
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Drivers 
(Software-Hardware Interface) 

Control Modules 

Alarm Devices 
(Hardware) 

Multicore Architecture  

 
Real-Time Operating System 

 

System monitors gas leaks and fire in 
oil extraction platforms 



Constraint Optimization 
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Constraint Optimization Problem 

Static Properties of Tasks 
(Constants) 

Dynamic Properties of Tasks 
(Variables) 

Performance Requirement 
(Objective Function) 

OS Scheduler Behaviour 
(Constraints) 



Process and Technologies 
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UML Modeling (e.g., 
MARTE) 

Constraint Optimization 

Optimization Problem 
(Find arrival times that maximize the 

chance of deadline misses) 

System Platform 

Solutions 
(Task arrival times likely to 

lead to deadline misses) 

Deadline Misses 
Analysis 

System Design Design Model (Time 
and Concurrency 

Information) 

INPUT 

OUTPUT 

Stress Test Cases 

Constraint  
Programming 

(CP) 



Challenges and Solutions 

•  Scalability problem: Constraint programming (e.g., 
IBM CPLEX) cannot handle such large input spaces 
(CPU, memory) 

•  Solution: Combine metaheuristic search and 
constraint programming 
–  metaheuristic search (GA) identifies high risk 

regions in the input space  
–  constraint programming finds provably worst-case 

schedules within these (limited) regions 
–  Achieve (nearly) GA efficiency and CP 

effectiveness 
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Combining GA and CP 
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A:12 S. Di Alesio et al.

Fig. 3: Overview of GA+CP: the solutions x1, y1 and z1 in the initial population of GA evolve into
x6, y6, and z6, then CP searches in their neighborhood for the optimal solutions x⇤, y⇤ and z

⇤.

in the schedule generated by the arrival times in x:
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— Union set I⇤ of impacting sets of tasks missing or closest to miss their deadlines. Let I⇤(x)
be the union of the impacting sets of tasks in J

⇤
(x):

I

⇤
(x)

def
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⇤2J
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I

j

⇤
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By definition, I⇤(x) contains all the tasks that can have an impact over a task that misses a
deadline or is closest to a deadline miss.

— Neighborhood ✏ of an arrival time and neighborhood size D. Let ✏(x
j,k

) be the interval
centered in the arrival time x

j,k

computed by GA, and let D be its radius: ✏(x
j,k

) = [x

j,k

�
D, x

j,k

+D]. ✏ defines the part of the search space around x

j,k

where to find arrival times that
are likely to break task deadlines. D is a parameter of the search.

— Constraint Model M implementing a Complete Search Strategy. Let M be the constraint
model defined in our previous work [Di Alesio et al. 2014] for the purpose of identifying ar-
rival times for tasks that are likely to lead to deadline misses scenarios. M models the static
and dynamic properties of the software system respectively as constants and variables, and the
scheduler of the operating system as a set of constraints among such variables. Note that M im-
plements a complete search strategy over the space of arrival times. This means that M searches
for arrival times of all aperiodic tasks within the whole interval T .

Our combined GA+CP strategy consists in the following two steps:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



Process and Technologies 
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UML Modeling (e.g., 
MARTE) 

Constraint Optimization 

Optimization Problem 
(Find arrival times that maximize the 

chance of deadline misses) 

System Platform 

Solutions 
(Task arrival times likely to 

lead to deadline misses) 

Deadline Misses 
Analysis 

System Design Design Model (Time 
and Concurrency 

Information) 

INPUT 

OUTPUT 

Genetic 
Algorithms 

(GA) 

Stress Test Cases 

Constraint  
Programming 

(CP) 



Environment-Based Testing  
of Soft Real-Time Systems 
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Objectives 

•  Model-based system testing 
–  Independent test team 
–  Black-box 
–  Environment models 
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Environment 
Simulator 

Test cases 

Environment Models 

Test oracle 



Environment: Domain Model 
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Environment: Behavioral Model 
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Test Case Generation 

•  Test objectives: Reach “error” states (critical environment 
states) 

•  Test Case: Simulation Configuration 
–  Setting non-deterministic properties of the environment, e.g., 

speed of sorter’s left and right arms 
•  Oracle: Reaching an “error” state 
•  Metaheuristics: search for test cases getting to error state 
•  Fitness functions 

–  Distance from error state 
–  Distance from satisfying guard conditions 
–  Time distance 
–  Time in “risky” states 
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Stress Testing focused on 
Concurrency Faults 
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Stress Testing of Distributed Systems 
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Objective 
Function 

Search 
Space 

Search 
Technique 

n  Problem = fault model 
n  Model = system or 

environment 
n  Search to optimize 

objective function(s)  
n  Metaheuristics, 

constraint programming 
n  Scalability: A small part 

of the search space is 
traversed 

n  Model: Guidance to 
worst case, high risk 
scenarios across space 

n  Reasonable modeling 
effort based on 
standards or extension 

n  Heuristics: Extensive 
empirical studies are 
required 

General Pattern: Using Metaheuristic Search 



92 

Objective 
Function 

Search 
Space 

Search 
Technique 

n  Simulation can be time 
consuming 

n  Makes the search 
impractical or ineffective 

n  Surrogate modeling 
based on machine 
learning 

n  Simulator dedicated to 
search 

General Pattern: Using Metaheuristic Search 

Simulator 



Scalability 
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Project examples 

•  Scalability is the most common verification challenge in 
practice 

•  Testing closed-loop controllers, vision system 
–  Large input and configuration space 
–  Smart heuristics to avoid simulations (machine 

learning) 
•  Schedulability analysis and stress testing 

–  Large space of possible arrival times 
–  Constraint programming cannot scale by itself 
–  CP was carefully combined with genetic algorithms 
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Scalability: Lessons Learned 

•  Scalability must be part of the problem definition and 
solution from the start, not a refinement or an after-thought 

•  Meta-heuristic search, by necessity, has been an essential 
part of the solutions, along with, in some cases, machine 
learning, statistics, etc.  

•  Scalability often leads to solutions that offer “best 
answers” within time constraints, but no guarantees 

•  Scalability analysis should be a component of every 
research project – otherwise it is unlikely to be adopted in 
practice 

•  How many papers research papers do include even a 
minimal form of scalability analysis? 
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Practicality 
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Project examples 

•  Practicality requires to account for the domain and context 

•  Testing controllers 
–  Relies on Simulink only 
–  No additional modeling or complex translation 
–  Within domains, differences have huge implications in terms 

of applicability (open versus closed loop controllers) 
•  Minimizing risks of CPU shortage 

–  Trade-off between between effective synchronisation and 
CPU usage 

–  Trade-off achieved through multiple-objective GA search and 
appropriate decision tool 

•  Schedulability analysis and stress testing 
–  Near deadline misses must also be identified 
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Practicality: Lessons Learned 

•  In software engineering, and verification in particular, 
just understanding the real problems in context is 
difficult 

•  What are the inputs required by the proposed 
technique? 

•  How does it fit in development practices? 
•  Is the output what engineers require to make 

decisions? 
•  There is no unique solution to a problem as they tend 

to be context dependent, but a context is rarely 
unique and often representative of a domain or type 
of system 
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Discussion 

•  Metaheuristic search for verification 
–  Tends to be versatile, tailorable to new problems and 

contexts 
–  Can cope with the verification of continuous behavior 
–  Entails acceptable modeling requirements 
–  Can provide “best” answers at any time 
–  Scalable, practical 
But 
–  Not a proof, no certainty 
–  Effectiveness of search guidance is key and must be 

experimented and evaluated 
–  Models are key to provide adequate guidance 
–  Search must often be combined with other techniques, e.g., 

machine learning 
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Discussion II 

•  Constraint solvers (e.g., Comet, ILOG CPLEX, SICStus) 
–  Is there an efficient constraint model for the problem at hand? 
–  Can effective heuristics be found to order the search? 
–  Better if there is a match to a known standard problem, e.g., job 

shop scheduling 
–  Tend to be strongly affected by small changes in the problem, e.g., 

allowing task pre-emption 
–  Often not scalable, e.g., memory 

•  Model checking 
–  Detailed operational models (e.g., state models), involving 

(complex) temporal properties (e.g., CTL) 
–  Enough details to analyze statically or execute symbolically  
–  These modeling requirements are usually not realistic in actual 

system development. State explosion problem.  
–  Originally designed for checking temporal properties through 

reachability analysis, as opposed to explicit timing properties 
–  Often not scalable 
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Talk Summary 

•  Focus: Meta-heuristic Search to enable scalable 
verification and testing. 

•  Scalability is the main challenge in practice. 
•  We drew lessons learned from example projects in 

collaboration with industry, on real systems and in real 
verification contexts. 

•  Results show that meta-heuristic search contributes to 
mitigate the scalability problem. 

•  It has also shown to lead to applicable solutions in 
practice. 

•  Solutions are very context dependent. 
•  Solutions tend to be multidisciplinary: system modeling, 

constraint solving, machine learning, statistics.  
101 



Making Model-Driven Verification Practical 
and Scalable - Experiences and Lessons 

Learned 

Lionel Briand 
 
Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT) 
University of Luxembourg, Luxembourg 
 
MODELSWARD, Rome, February 20, 2016 
 
SVV lab: svv.lu 
SnT: www.securityandtrust.lu 
 


