
© Copyright Malina Software

Beyond Mere Logic: A Vision
of Computer Languages for

the 21st Century
- A discourse on software physics -

Bran Selić
Malina Software Corp. CANADA

Simula Research Laboratory, NORWAY
Zeligsoft Limited (2009), CANADA
University of Toronto, CANADA

University of Sydney, AUSTRALIA

selic@acm.org

© Copyright Malina Software 2013-20142

From Real Time to Real WorldFrom Real Time to Real World

Battery power
management

Real-time
video/audio

playback
Real-time

video/audio
capture

Radio antenna
management

GPS
reception

Touch screen
sensing

Gravity
sensor

App
scheduling

Physical
memory

constraints

Real-time software has traditionally been Real-time software has traditionally been
perceived as a niche discipline, but...

© Copyright Malina Software 2013-20143

From Real Time to Real World (cont.)From Real Time to Real World (cont.)

Smart
Phones

Internet of
Things

Smart
Grids

Smart
Houses

Smart
Almost

Everything
(SAE)

⇒⇒⇒⇒ An increasing number of software applications
interact directly with the physical world

© Copyright Malina Software 2013-20144

Application Types in This CategoryApplication Types in This Category

� Control and monitoring systems, communications systems,
industrial control systems, automotive systems, etc.

� Financial systems (banking, point of sale terminals, etc.)

� Computer-aided design tools (AutoCAD, CATIA, etc.)

� Simulation software (physics, weather, machinery, etc.)

� Computer games software

� etc.

All of these application types either
interact directly with the physical world
and/or incorporate a representation of it

Q: Are our software technologies up to the task?

© Copyright Malina Software 2013-20145

The Case of the MARS Climate OrbiterThe Case of the MARS Climate Orbiter

"The 'root cause' of the loss of the

spacecraft was the failed

translation of English units into

metric units in a segment of ground-

based, navigation-related mission

software…”

-- NASA report, 1999

"The 'root cause' of the loss of the

spacecraft was the failed

translation of English units into

metric units in a segment of ground-

based, navigation-related mission

software…”

-- NASA report, 1999

~$650M!

No mainstream programming language has a first-class concept
of a “physical” value or time

e.g., force:Force = 225;
delay(100);

Q: Why was this not detected by the compiler as a Q: Why was this not detected by the compiler as a
type mismatch?

The Mars Climate Orbiter

Smoke

© Copyright Malina Software 2013-20146

Sidebar: User Types vs. (First-class) Language ConceptsSidebar: User Types vs. (First-class) Language Concepts

� Q: Can’t we just define a special “physical” type?

enum LengthUnit {mm, cm, m, km};

type Length {

real value,

LengthUnit unit};

� No: a compiler would still not catch unit mismatches
or know how to compare two or more values of such
a type

In contrast, a first-class language construct has
semantics defined by the language that are known
and supported by all conforming tools (compilers,
validators, interpreters, debuggers, etc.)

© Copyright Malina Software 2013-20147

The Case of the Vista™ OSThe Case of the Vista™ OS

(a) MITS Altair 8800

(8080 CPU) 4KB

(c) Lenovo ThinkPad X61

(Intel Core2 Duo CPU)

1GB

(b) Sinclair ZX81

(Z80 CPU) 8KB

Q:Which of these Q:Which of these
Computing platforms
can support Vista?

A:None of themA:None of them

Clearly, not much
thought was given to
the capabilities of
the underlying
hardware platform

© Copyright Malina Software 2013-20148

State of the PracticeState of the Practice

OOur current software technologies and
design methods are not very well suited for
tackling interactive applications

(A problem of accidental complexity)

Why not?

To understand why things are the way they are, we
need to know how they came to be…

© Copyright Malina Software 2013-20149

A Brief Look BackA Brief Look Back

� Original computer applications were devised to mechanize
computation of complex algorithms

� Ballistics tables, code breaking, etc.

� …which is why they are called “computers”

⇒ Strong focus on numerical methods, mathematical logic,
and symbol manipulation

ENIAC Colossus

A clear algorithmic biasA clear algorithmic bias

© Copyright Malina Software 2013-201410

The Response: Software PlatonismThe Response: Software Platonism

� “I see no meaningful difference between
programming methodology and mathematical
methodology.”

-- Edsgar W. Dijkstra (EWD 1209)

� “Because [programs] are put together in the context
of a set of information requirements, they observe
no natural limits other than those imposed by those
requirements. Unlike the world of engineering, there
are no immutable laws to violate.”

-- Wei-Lung Wang, Comm. of the ACM (45, 5), 2002

This was and still is a highly influential viewThis was and still is a highly influential view

© Copyright Malina Software 2013-201411

Current Mainstream Programming LanguagesCurrent Mainstream Programming Languages

Source: Tiobe & Jobshttp://www.pasteur.fr/formation/infobio/python/ch01s03.html

“Languages of the future for “Languages of the future for
programming techniques of the past”
[E. Dijkstra (re: APL)]

© Copyright Malina Software 2013-201412

The Platonist Approach to Software DesignThe Platonist Approach to Software Design

� Focus on system functionality (“business logic”) first
and foremost

� No point in worrying about other concerns (e.g.,
performance, availability) if that is incorrect

� Donald Knuth:
“Premature optimization is the root of all evil”

� “Platform independence”

Unstated assumption:
Other concerns are separable from
functionality and, hence, can be retrofitted
without disrupting the business logic (?)

© Copyright Malina Software 2013-201413

Those “Other” ConcernsThose “Other” Concerns

� The “ilities” of software

� Reliability, scalability, availability, testability,
performance/throughput, security, maintainability, stability,
controllability, observability, extensibility, interoperability,
usability, etc.

Most of these are affected either directly
or indirectly by the physical aspects of the
system (e.g., platform, communication
networks)

© Copyright Malina Software 2013-201414

Did someone just say
“NON-FUNCTIONAL”!?

© Copyright Malina Software 2013-201415

So, What’s Wrong with Saying “Non-functional”?So, What’s Wrong with Saying “Non-functional”?

1. Negative identification (does not tell us what they are)

2. Suggests second-order concerns (auxiliary, miscellaneous, etc.)

3. Bundles in an arbitrary way a collection of very diverse but
often critical characteristics

� Although each of them is achieved by different idiosyncratic means

4. Most critical: separates them from associated functionality

� Many have a fundamental impact on how the functionality is realized

� NB: They are mostly non-modular and pervasive ⇒⇒⇒⇒ quality cannot be
retrofitted easily (e.g., no such thing as a reliability or scalability
module or aspect)

� Is “cross-cutting” a better term?

� Not much: only deals with points 1 and 2 above

� False impression that the problem can be solved with aspect-oriented
solutions

© Copyright Malina Software 2013-201416

The Wisdom of the Ancients*The Wisdom of the Ancients*

�

--Nancy Leveson, Safeware, 1995

Software
Computer
(Hardware)

Special-purpose
machine+ =

� “All machinery is derived from nature, and
is founded on the teaching and instruction
of the revolution of the firmament.”

-- Vitruvius, On Architecture, Book X, 1st Century BC

* “The ancients stole all our good new ideas” [M. Twain/ R.W. Emerson?]

Q: What impact do the
physical characteristics
of this have on... …this

…and this

© Copyright Malina Software 2013-201417

Software Physics – and
how to cope with it

© Copyright Malina Software 2013-201418

What Makes Things Difficult for SoftwareWhat Makes Things Difficult for Software

� The essential complexities of the physical world:

� Physical distribution

� Modal behaviour

� Non-determinism (asynchrony)

� Concurrency

� Qualitative diversity

� Quantity can affect quality

Software System

The physical world is
complex and some of
this complexity is
necessarily transferred
to the software

The physical world

© Copyright Malina Software 2013-201419

The Effects of Physical Distribution (1)The Effects of Physical Distribution (1)

� Structural impact:

� Need to specify complex topological structures

� Need for local software “agents” that represent and
interact with that world to the rest of the software

© Copyright Malina Software 2013-201420

Coping with Structural Impacts of DistributionCoping with Structural Impacts of Distribution

� Introduction of the OO paradigm has proved
fundamental here

� A structural approach: programs represented by networks
of collaborating machines

� Introduction of logical entities (e.g., a “call” object)

� Enhanced by the introduction of architectural
description languages (ADLs)

� E.g., UML structured classifiers, collaborations, AADL

© Copyright Malina Software 2013-201421

Physics vs. Logic: The Great Impossibility ResultPhysics vs. Logic: The Great Impossibility Result

It is not possible to guarantee that agreement
can be reached in finite time over an
asynchronous communication medium, if the
medium is lossy or one of the distributed sites
can fail.

[Fischer, M., N. Lynch, and M. Paterson, “Impossibility
of Distributed Consensus with One Faulty Process”

Journal of the ACM, (32, 2) April 1985]

End 1

Communications NetworkCommunications Network

End 2V V

Reliable Communication Service

CommServ.AgentCommServ.Agent

© Copyright Malina Software 2013-201422

The Effects of Physical Distribution (2)The Effects of Physical Distribution (2)

� Behavioral impact:

� Communication delays (outdated status data) and failures
(e.g., loss, duplication, reordering of messages)

� Partial system (i.e., node) failures

� Coping mechanisms:

� Fault-tolerance strategies (e.g., protective redundancies,
fault diagnosis, fault recovery) have been defined

� Need an ontological framework of failures and corresponding
remedies

� First-class language support needed for these types of
mechanisms

• Research challenge: can and how should a computer (modeling)
language support these?

© Copyright Malina Software 2013-201423

Modal BehaviourModal Behaviour

� Response to an event depends on what happened
before (history)

� Coping mechanism: state machines

� In particular hierarchical state machines for specifying
modal behaviors (e.g., UML state machines)

NotReady

Ready

S1 S2

A

A

Failed

Start

Failure

Failure

© Copyright Malina Software 2013-201424

Non-Determinism (Asynchrony)Non-Determinism (Asynchrony)

� Events can and do
occur out of desired
or expected order

� Yet, need to be handled
appropriately

� Coping mechanisms:

� State machines

� Research challenge:
modeling uncertainty and
defining corresponding
language support

Python swallowing a
cow

Ringing
phone

© Copyright Malina Software 2013-201425

ConcurrencyConcurrency

� Difficult to reason about concurrency

Head start

S
T
A

R
T

© Copyright Malina Software 2013-201426

Coping with ConcurrencyCoping with Concurrency

� Direct language support for existing concurrency
management and synchronization mechanisms

� Active objects (e.g., UML): programs as networks of
concurrent entities

� Synchronization mechanisms (run-to-completion, priority
scheduling mechanisms, mutual exclusion mechanisms, etc.)

� The MARTE profile as an example

© Copyright Malina Software 2013-201427

Beyond Logic: MARTE

coping with quality and
quantity in software

© Copyright Malina Software 2013-201428

Where Software Meets PhysicsWhere Software Meets Physics

� Everything that the software senses and performs
is mediated by the platform and is influenced by its
physical properties

Platform

Software application

The physical world

© Copyright Malina Software 2013-201429

Application

Platform

Platforms: The Raw Material of SoftwarePlatforms: The Raw Material of Software

� [Software] Platform: The full complement of
software and hardware required for a given
application program to execute correctly

Software Application [SW]

OS, Runtime Framework(s), VMs, etc. [SW]

runs on

Computing hardware [HW]

runs on

Mainstream programming and modeling languages lack support
for representing platforms and their characteristics!

© Copyright Malina Software 2013-201430

What About Platform Independence?What About Platform Independence?

� An important and useful notion

� Helps abstract away irrelevant technological detail

� Necessary for software portability

� Platform independence does not mean platform
ignorance

� There are ways of achieving platform independence that
account for the influence of platform characteristics

Any claims of “platform independence” should be
accompanied by clear statements of the range of
platforms that the application is independent of

© Copyright Malina Software 2013-201431

What We Need to Know About PlatformsWhat We Need to Know About Platforms

1. Its relevant quality of service characteristics (size,
capacity, performance, bandwidth, etc.)

2. Its computing and communications structure

3. The deployment of application software components
across the platform

APPLICATION

PLATFORM

ALLOCATION (DEPLOYMENT)

© Copyright Malina Software 2013-201432

What is MARTE?What is MARTE?

� A domain-specific modeling language (DSML) for the
design and analysis of modern cyber-physical
systems

� Modeling and Analysis of Real-Time and Embedded systems

� Supplements UML (i.e., does not replace it)

� Realized as a UML profile

© Copyright Malina Software 2013-201433

What MARTE Adds to UMLWhat MARTE Adds to UML

1. SUPPORT FOR CONCISE AND SEMANTICALLY
MEANINGFUL MODELING OF CPS SYSTEMS:

� A domain-specific modeling language for modeling real-time,
embedded, and cyber-physical systems

� Support for precise specifications of quality of service (QoS)
characteristics (e.g., delays, memory capacities, CPU speeds,
energy consumption)

� Can be used directly in conjunction with SysML for greater CPS
support

2. SUPPORT FOR FORMAL ENGINEERING ANALYSES OF
MODELS OF RTE/CPS:

� A generic framework for certain types of (automatable)
quantitative analyses of UML models

� Suited to computer-based automation

© Copyright Malina Software 2013-201434

Example: “Bare” UML ModelExample: “Bare” UML Model

ClockApp

«signal» tick()

Ticker
0..1

0..*

Display

display(v:String)

0..*

1

sd

loop

:Ticker :ClockApp :Display

@t2

tick()

display(v)

@t1

OS timer
utility Hardware

HW interrupt
(frequency?)

Execution
time?

Scheduling
delay?

How many?

{(@t2 - @t1) <= 100}
Which
units?

© Copyright Malina Software 2013-201435

Annotating a UML Model with MARTEAnnotating a UML Model with MARTE

ClockApp
Ticker

0..1

0..*

Display

display(v:String)

0..*

1

«timerResource»
{isPeriodic=true,
duration=(100, us)}

«swSchedulableResource»
{isStaticSchedulingFeature=true,
isPreemptable=false}

«signal» tick()

«resourceUsage»
{execTime = ((47*CPUrating), us)}

«hwDevice»
{description=“DSP1455A”}

«resourceUsage»
{execTime = (1.5, us)}

NB: variable

© Copyright Malina Software 2013-201436

Core Concept: ResourceCore Concept: Resource

� Resource: [Oxford Dictionary definition]

“A source of supply of money, materials, staff and other
assets that can be drawn upon…in order to function
effectively”

� In MARTE, a platform is viewed as a collection of
different types of resources, which can be drawn
upon by applications

� The finite nature of resources reflects the physical nature
of the underlying hardware platform(s)

36

Platform Resource
1..*

Computing
Resource

Memory
Resource

etc.

© Copyright Malina Software 2013-201437

Core Concept: Resource ServicesCore Concept: Resource Services

� In MARTE resources are viewed as service providers

� Consequently, applications are viewed as service clients

Resource
Resource
Service

1..*

� Resource services are characterized by their

� Functionality

� Quality of service (QoS)

e.g. (platform services):
• memory provisioning
• processing power
• bandwidth
• energy
• mutual exclusion

© Copyright Malina Software 2013-201438

Core Concept: Quality of Service (QoS)Core Concept: Quality of Service (QoS)

� Quality of Service (QoS):

� A measure of the effectiveness of service provisioning

� Two complementary perspectives on QoS

� Required QoS: the demand side (what applications require)

� Offered QoS: the supply side (what platforms provide)

Many engineering analyses consist of calculating
whether (QoS) supply can meet (QoS) demand

“Virtually every calculation an engineer performs…is a failure
calculation…to provide the limits than cannot be exceeded”

-- Henry Petroski

© Copyright Malina Software 2013-201439

QoS CompatibilityQoS Compatibility

� We have powerful mechanisms for verifying
functional compatibility (e.g., type theory) but
relatively little support for verifying QoS
compatibility

Offered

QoS

1 ms

Application

Client

readDB()

Key engineering question:
(RequiredQoS ≤≤≤≤ OfferedQoS) ?

Platform

Resource

readDB()

Required

QoS

2 ms

© Copyright Malina Software 2013-201440

Why It is Difficult to Predict Software PropertiesWhy It is Difficult to Predict Software Properties

� Because platform resources are often shared

� ..often by independently designed applications

� Contention for resources
Offered

QoS

1 ms

Application

Client

readDB()

Platform

Resource

readDB()

Required

QoS

2 ms

Application

Client-2

1 ms

readDB()

© Copyright Malina Software 2013-201441

Quantitative QoS ValuesQuantitative QoS Values

� Expressed as an amount of some physical measure

� Need a means for specifying physical quantities

� Value: quantity

� Dimension: kind of quantity (e.g., time, length, speed)

� Unit: measurement unit (e.g., second, meter, km/h)

� However, additional optional qualifiers can also be
attached to these values:

� source: estimated/calculated/required/measured

� precision

� direction: increasing/decreasing (for QoS comparison)

� statQ: maximum/minimum/mean/percentile/distribution

© Copyright Malina Software 2013-201442

MARTE Library: Predefined TypesMARTE Library: Predefined Types

© Copyright Malina Software 2013-201443

MARTE Library: Measurement UnitsMARTE Library: Measurement Units

© Copyright Malina Software 2013-201444

Explicit Approach: Topics CoveredExplicit Approach: Topics Covered

Using Time

• timed elements

• timed events

• timed actions

• timed constraints

Structure of Time

• time bases

• multiple time bases

• instants

• time relationships

TB1

TB2

Access to Time

• clocks

• logical clocks

• chronometric clocks

• current time

© Copyright Malina Software 2013-201445

Example: Time AnnotationsExample: Time Annotations

:Controller :Sensor

start()

acquire()

ack()

sendData(data)

@t2
@t0

@t1

@t3

Sd DataAcquisitionSd DataAcquisition

:Controller :Sensor

acquire() { d1<=(1, ms) }

sendData (data) { [(0, ms)..(10, ms)] }

ack()

@t2

{ [d1..30*d1] }

&d1

constraint1= { (t0[i+1] - t0[i]) > (100, ms) }

constraint2= { (t3 when data<5.0) < t2+(30, ms) }

Extended

duration

intervals with

bound « [] »

specification

Instant Interval

Constraint

Constraint in an

observation with condition

expression

Duration expression

between two sucessive

occurrences

start() { jitter(t0)<(5, us) }

@t0

{]t1..t1+(8, ms)] }

Jitter constraint

@t3

@t1

© Copyright Malina Software 2013-201446

UML/MARTE MODEL

MARTE Support for Computer-Aided AnalysisMARTE Support for Computer-Aided Analysis

APPLICATION (ARCHITECTURE) MODEL

PLATFORM MODEL

ALLOCATION (DEPLOYMENT)

EQUIVALENT

ANALYSIS

MODEL

µµµµ
M2M XformM2M Xform

COMPUTER-BASED
ANALYSIS

0

5

10

15

20

0 0.2 0.4 0.6 0.8

Arrival rate

Q
u

e
u

e
 l
e
n

g
th

MODELER

© Copyright Malina Software 2013-201447

Generic Quantitative Analysis Model (GQAM)Generic Quantitative Analysis Model (GQAM)

� Captures the pattern common to many different kinds of
quantitative analyses (using concepts from GRM)

� Specialized for each specific analysis kind

(e.g., application
programs, system
programs, etc.)

Work demand Work demand
arrivals
(Workload
intensity)

(e.g., event arrivals,
time triggers)

Demand Side Supply Side

Work
CharacterizationWork
Characterization
Work
Characterization
(Scenarios)

Resource1

ResourceN

.

.

.

(e.g., disk)

(e.g., CPU)

Analysis Context

© Copyright Malina Software 2013-201448

Performance Analysis Example – ContextPerformance Analysis Example – Context

� An interaction (seq. diagram representation)

webserver

<<PaRunTInstance>>

{instance = webserver}

database
<<PaRunTInstance>>

{instance = database}

browser

<<PaRunTInstance>>

{instance = browser}

<<GaPerformanceContext>> {contextParams= in$Nusers, in$ThinkTime, in$Images, in$R}

2: getCustomerData

<<PaStep>>
{hostDemand = (2,ms)}

3:

<<GaWorkload Event>> {closed (population=Nusers,
extDelay=ThinkTime)}

<<PaCommStep>> {msgSize=(2.9, KB)}

1: getHomePage

<<PaStep>> {prob=0.2}[if customer is logged in]opt<<PaStep>> {hostDemand = (1,ms),
respT={((1,s,percent95),req),

((R,s,percent95),calc)}

Slide courtesy of D. Petriu, M. Woodside (Carleton U.)

© Copyright Malina Software 2013-201449

Typical Performance Analysis ResultsTypical Performance Analysis Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8

Arrival Rate

U
ti

li
z
a
ti

o
n

0

5

10

15

20

0 0.2 0.4 0.6 0.8

Arrival rate

R
e
s
id

e
n

c
e
 T

im
e

0

5

10

15

20

0 0.2 0.4 0.6 0.8

Arrival rate

Q
u

e
u

e
 l
e
n

g
th

Utilization Residence Time Queue length
saturation

saturation

saturation

Slide courtesy of D. Petriu, M. Woodside (Carleton U.)

© Copyright Malina Software 2013-201450

SummarySummary

� Software is increasingly more integrated into
everyday operations, which involves an ongoing
interaction with the physical world

� Our mainstream programming languages are not well
suited for this environment

� Needed: Higher-order languages that are more
directly connected to this environment

⇒ Model-based technologies and practices

⇒ Higher levels of abstraction and automation

♦ Still a research topic, but we already have a
number of important components of the solution

© Copyright Malina Software 2013-201451

– THANK YOU–
QUESTIONS,
COMMENTS,

ARGUMENTS...

– THANK YOU–
QUESTIONS,
COMMENTS,

ARGUMENTS...

© Copyright Malina Software 2013-201452

Supplementary Slides

© Copyright Malina Software 2013-201453

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize

};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

Can you see what this
program is doing?

Accidental Complexity or Why It’s Called “Code”*Accidental Complexity or Why It’s Called “Code”*

Code: a system used for brevity or secrecy [Dictionary.com]

© Copyright Malina Software 2013-201454

The Corresponding UML ModelThe Corresponding UML Model

«sc_slave»

b1:Consumer
«sc_method»

a1:Producer
start out1 in1

Can you see it now?

10

© Copyright Malina Software 2013-201455

Plus the Power of Computer AutomationPlus the Power of Computer Automation

«sc_slave»

b1:Consumer
«sc_method»

a1:Producer
start out1 in1

«sc_link_mp»

link1

10

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize

};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

© Copyright Malina Software 2013-201456

Model-Based Engineering: The Essential Coping ApproachModel-Based Engineering: The Essential Coping Approach

� An approach to system and software development in which
computer-based software models play an indispensable role

� Based on two time-proven premises:

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

(2) ↑↑↑↑AUTOMATION

S1

S3

S2

e1/action1

e2/action2

e3/action3

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

(1) ↑↑↑↑ABSTRACTION

S1

S3

S2

e1/action1

e2/action2

e3/action3

Realm of
modeling
languages

Realm of
tools and
model
transforms

© Copyright Malina Software 2013-201457

A shameless plugA shameless plug

Available from a web page/bookstore near you:

Publisher: Morgan Kaufmann
ISBN: 978-0-12-416619-6

© Copyright Malina Software 2013-201458

The “Software Crisis”The “Software Crisis”

� Systems of this type were designed primarily by
classical engineers (mechanical, electrical, radio,
etc.) and physicists

� Software was viewed as a simple production problem (i.e.,
writing the code) – as opposed to a research problem

� It is still a common attitude today among many traditional
engineering professionals

• A “soft” science: difficult to make irrefutable assertions or
predictions

� But, the software problems of SAGE and similar
systems exposed the difficulties of designing
reliable software

� 1968 NATO Conference on Software Engineering ⇒⇒⇒⇒
“software crisis”

© Copyright Malina Software 2013-201459

Functionality vs. EngineeringFunctionality vs. Engineering

Functionality (Logic) … and its Engineering Manifestation

But, does this
paradigm apply
to software?

• Air conditioning

• Plumbing

• Electrical wiring

• Water recycling

• Waste management

• Steering

• etc.

