MRS SOFTWARE CORP.

Beyond Mere Logic: A Vision
of Computer Languages for
the 21s' Century

- A discourse on software physics -

Bran Selié

Malina Software Corp. CANADA
Simula Research Laboratory, NORWAY
Zeligsoft Limited (2009), CANADA
University of Toronto, CANADA
University of Sydney, AUSTRALIA

selic@acm.orq

© Copyright Malina Software ey

From Real Time to Real World

GPS
reception

management

[Radio antenna

Battery power
management

[App
scheduling Gravity
sensor
[Touch screen
sensing :
Real-time
video/audioJ
Phy5ica| p|ayback
memory Real-time
constraints video/audio
capture

Real-time software has traditionally been
perceived as a niche discipline, but...

= 2 © Copyright Malina Software 2013-2011 mum

From Real Time to Real World (cont.)

Smart
Phones

-

Almost
Everything
(SAE)

Internet of
Things

= An increasing number of software applications
interact directly with the physical world

= 3 © Copyright Malina Software 2013-2011

Application Types in This Category

+ Control and monitoring systems, communications systems,
industrial control systems, automotive systems, etc.

+ Financial systems (banking, point of sale terminals, etc.)
¢+ Computer-aided design tools (AutoCAD, CATIA, etc.)

+ Simulation software (physics, weather, machinery, etc.)
¢+ Computer games software

+ eftc.

(All of these application types either
interact directly with the physical world
\and/or incorporate a representation of it)

[Q: Are our software technologies up to the task?j

m 4 © Copyright Malina Software 2013-2011

The Case of the MARS Climate Orbiter

The Mars Climate Orbiter <

"The 'root cause' of the loss of the
spacecraft was the failed
translation of English units into
metric units in a segment of ground-
based, navigation-related mission
software...”

-- NASA report, 1999

Q: Why was this not detected by the compiler as a
type mismatch?

~

\.

¢ . . .
No mainstream programming language has a first-class concept

of a “"physical” value or time
e.g., force:Force = 225;

delay (100);

-

J

© Copyright Malina Software 2013-2011

Sidebar: User Types vs. (First-class) Language Concepts

¢+ Q: Can't we just define a special “physical” type?

enum LengthUnit {mm, cm, m, km};

type Length {
real value,
LengthUnit unit};

¢+ No: a compiler would still not catch unit mismatches
or know how to compare two or more values of such
a type

(In contrast, a first-class language construct has
semantics defined by the language that are known
and supported by all conforming tools (compilers,

\validat'o'rs, interpreters, debuggers, etc.) y

m b

© Copyright Malina Software 2013-2011 mm

The Case of the Vista™ OS

Q:Which of these

Computing platforms
can support Vista™? ‘

(a) MITS Altair 8800
(8080 CPU) 4KB

/CIearIy, not much)
’ thought was given to
the capabilities of
the underlying

= E
<l \h

ardware platform

Windows Vista

(b) Sinclair ZX81
(Z80 CPU) 8KB

(c) Lenovo ThinkPad X61
(Intel® Core™2 Duo CPU)
1GB

A:None of them

7

© Copyright Malina Software 2013-2011 mm

State of the Practice

\

(Our current software technologies and
design methods are not very well suited for
tackling interactive applications

\(A problem of accidental complexity) y

To understand why things are the way they are, we
need to know how they came to be...

= 8§ _.,———ssssssssssssssESESESSSSSSSSSsssssssssssssmmmm © Copyright Malina Software 2013-2011 mm

A Brief Look Back

-
B il % 1:\:; '_r".: .
b | ! 'I1I!-—‘. " 1 L 4: P
et B

L | A, fhr P (S LAy . | BTt o

+ Original computer applications were devised to mechanize
computation of complex algorithms

= Ballistics tables, code breaking, etc.
= _.which is why they are called "computers”

— Strong focus on_numerical methods, mathematical logic,
and symbol manipulation

| A clear algorithmic bias |

9

© Copyright Malina Software 2013-2011 mm

The Response: Software Platonism

+ "I see no meaningful difference between
programming methodology and mathematical
methodology."

-- Edsgar W. Dijkstra (EWD 1209)

+ "Because [programs] are put together in the context
of a set of information requirements, they observe
no natural limits other than those imposed by those
requirements. Unlike the world of engineering, there
are _no_immutable laws to violate."

-- Wei-Lung Wang, Comm. of the ACM (45, 5), 2002

This was and still is a highly influential view

© Copyright Malina Software 2013-2011 mm

Current Mainstream Programming Languages

Java2 (i8] Cee (150

“Languages of the future for
programming techniques of the past”
\[E. Dijkstra (re: APL)] .

o, S 4

Gt

http://www.pasteur.fr/formation/infobio/python/ch01s03.html

Lisp 13 ASP_net

Top programming sgpuasges oo Sisub by WTEe g 1

i R afafamLs - sfas ol '-!-I--'WCI;"D
| T o
1368 Lm -\.l":':\.
| [e
150 ol &0 \ i
| \ i
1#2 E &
| E -
1T+ :. (5 q.fr
185 " [
| !--l # _\" F)
198 ':‘ 2
l ; 3 p ..‘- Jﬁ' I"? -'\'..r 'l.‘.?. J -‘f

i I I I I .
- 11111} :
' il
ﬂ;: K P BN BN BN OB BN BN OB OB BN W RS BN BN B A l - ‘ o

S B PR T ey

1978 Scheme L &
| \ & # e
“T“ Forran 77 o Cletm Sovirper e ke Moper Ditdinh Arobie
198 C{K&R)
| \
.8 \ Java 1 PHP
| _ = 2 lawva
|. Corrirnon Lisp S":“- Objective-C 3 Objective-C
.-T., / Caml C++ 4q Jawva (Android)
16 Tel Scheme R4RS ‘ cH S H.uh-".l'
| 5 SO
1¥0
|
I
1¥=
|
1534
|
|
|
L

Source: Tiobe & Jobs
© Copyright Malina Software 2013-2011 mm

The Platonist Approach to Software Design

(Unstated assumption: A
Other concerns are separable from
functionality and, hence, can be retrofitted

9 without disrupting the business logic (?) Py

* Focus on system functionality ("business logic™) first
and foremost

= No point in worrying about other concerns (e.g.,
performance, availability) if that is incorrect

* Donald Knuth:
"Premature optimization is the root of all evil”

¢ "Platform independence”

© Copyright Malina Software 2013-2011 mm

Those "Other” Concerns

¢ The "ilities” of software

= Reliability, scalability, availability, testability,
performance/throughput, security, maintainability, stability,
controllability, observability, extensibility, interoperability,
usability, etc.

(Most of these are affected either directly h
or indirectly by the physical aspects of the
system (e.g., platform, communication

\networks)

%

= I3 ;.= © Copyright Malina Software 2013-2011 mmm

~

Did someone just say
"NON-FUNCTIONAL"I?

J

= 11 -——————————————— © Copyright Malina Software 2013-2011 mmm

So, What's Wrong with Saying "Non-functional”?

1. Negative identification (does not tell us what they are)

2. Suggests second-order concerns (auxiliary, miscellaneous, etc.)

3. Bundles in an arbitrary way a collection of very diverse but
often critical characteristics

= Although each of them is achieved by different idiosyncratic means

4. Most critical: separates them from associated functionality
= Many have a fundamental impact on how the functionality is realized

= NB: They are mostly non-modular and pervasive = quality cannot be
retrofitted easily (e.g., no such thing as a reliability or scalability
module or aspect)

¢+ Is “cross-cutting” a better term?
= Not much: only deals with points 1 and 2 above

= False impression that the problem can be solved with aspect-oriented
solutions

m IS5 © Copyright Malina Software 2013-2011 mum

The Wisdom of the Ancients*

" “The ancients stole all our good new ideas” [M. Twain/ R.W. Emerson?] |

of the revolution of the firmament.”
-- Vitruvius, On Architecture, Book X, 1st Century BC

. Computer __ | Special-purpose
(Hardware) - machine
/ --Nancy Leveson, Safeware\ 1995
Q: What impact d9 t.he
and this] | Bt chrectersi
m b © Copyright Malina Software 2013-2011 mmm

Software Physics - and
how to cope with it

= 17 -——_—_—_——————————————————————— © Copyright Malina Software 2013-2011 mmm

What Makes Things Difficult for Software

Software System

The physical world is
complex and some of
this complexity is

to the software

necessarily transferred

J

+ The essential complexities of the physical world:
= Physical distribution

= Modal behaviour

= Non-determinism (asynchrony)
= Concurrency

= Qualitative diversity

= Quantity can affect quality
m I8

© Copyright Malina Software 2013-2011 mm

The Effects of Physical Distribution (1)

+ Structural impact:

= Need to specify complex topological structures

= Need for local software “"agents” that represent and
interact with that world to the rest of the software

= |19 —-————rrssssss—s—s——————e———e———eeeeeeeeeeeeeseeeessmmmn © Copyright Malina Software 2013-2011 mm

Coping with Structural Impacts of Distribution

- Y

¢ Introduction of the OO paradigm has proved
fundamental here

= A structural approach: programs represented by networks
of collaborating machines

= Introduction of logical entities (e.g., a “call” object)

+ Enhanced by the introduction of architectural
description languages (ADLs)

= E.g., UML structured classifiers, collaborations, AADL

© Copyright Malina Software 2013-2011 mm

Physics vs. Logic: The Great Impossibility Result

It is not possible to guarantee that agreement
can be reached in finite time over an
asynchronous communication medium, if the
medium is lossy or one of the distributed sites
can fail.

[Fischer, M., N. Lynch, and M. Paterson, "Impossibility
of Distributed Consensus with One Faulty Process”
Journal of the ACM, (32, 2) April 1985]

© Copyright Malina Software 2013-2011 mm

The Effects of Physical Distribution (2)

+ Behavioral impact:

= Communication delays (outdated status data) and failures
(e.g., loss, duplication, reordering of messages)

= Partial system (i.e., node) failures
+ Coping mechanisms:

* Fault-tolerance strategies (e.g., protective redundancies,
fault diagnosis, fault recovery) have been defined

= Need an ontological framework of failures and corresponding
remedies

= First-class language support needed for these types of
mechanisms

- Research challenge: can and how should a computer (modeling)
language support these?

= 22 =-TTS————EEEEEEEEEEEEEEEEEESSEEEESSEEEEssssssssssmmmm - © Copyright Malina Software 2013-2011 mm

Modal Behaviour

+ Response to an event depends on what happened
before (history)

+ Coping mechanism: state machines

= In particular hierarchical state machines for specifying
modal behaviors (e.g., UML state machines)

A
Fail
@eady} i { Failed]

Failure
4 Ready A

1 G
- J

© Copyright Malina Software 2013-2011 mm

Non-Determinism (Asynchrony)

Ringing
phone

m 21

+ Events can and do
occur out of desired

or expected order

= Yet, need to be handled
appropriately

+ Coping mechanisms:
= State machines

= Research challenge:
modeling uncertainty and

A defining corresponding
> \anguage support

Python swallowing a
cow

© Copyright Malina Software 2013-2011

Concurrency

+ Difficult to reason about concurrency

= 25 ---Tes-ssssssssssssssSSSSSSSSSSSSssssssssssssssmmmm' © Copyright Malina Software 2013-2011 mm

Coping with Concurrency

+ Direct language support for existing concurrency
management and synchronization mechanisms

= Active objects (e.g., UML): programs as networks of
concurrent entities

= Synchronization mechanisms (run-to-completion, priority
scheduling mechanisms, mutual exclusion mechanisms, etc.)

+ The MARTE profile as an example

= 260 --———sssssssssssssSSSSSSSSSSSSSSSsssssssssssssssmmm - © Copyright Malina Software 2013-2011 mm

Beyond Logic: MARTE

coping with quality and
quantity in software

2 27 eSS © Copyright Malina Software 2013-2011 mm

Where Software Meets Physics

+ Everything that the software senses and performs
is mediated by the platform and is influenced by its
physical properties

Soft+2:2 Lilication

The physical world

= 28 =—-—T-——sssssssssSSSSSSSSSSSSSSSSSsssssssssssssssmmm - © Copyright Malina Software 2013-2011 mm

Platforms: The Raw Material of Software

Software Application [SW]

| runs on
C ¥ N

0S, Runtime Framework(s), VMs, etc. [SW]

Computing hardware [HW]

& /

* [Software] Platform: The full complement of
software and hardware required for a given
application program to execute correctly

Mainstream programming and modeling languages lack support
for representing platforms and their characteristics!

= 29

© Copyright Malina Software 2013-2011 mm

What About Platform Independence?

¢+ An important and useful notion
= Helps abstract away irrelevant technological detail

= Necessary for software portability

* Platform independence does not mean platform
ignorance

= There are ways of achieving platform independence that
account for the influence of platform characteristics

-
Any claims of “platform independence” should be

accompanied by clear statements of the range of
\platforms that the application is independent of

© Copyright Malina Software 2013-2011 mm

What We Need to Know About Platforms

1. Its relevant quality of service characteristics (size,
capacity, performance, bandwidth, etc.)

2. Its computing and communications structure

3. The deployment of application software components
across the platform

[—
APPLICATION
L=t |
ALLGCATION (BEPLOYMENT) | U L@
5 PLATFO M R I E
v ¥ 4
| A | — |
[

© Copyright Malina Software 2013-2011 mm

What is MARTE?

* A domain-specific modeling language (DSML) for the
design and analysis of modern cyber-physical
systems

= Modeling and Analysis of Real-Time and Embedded systems
= Supplements UML (i.e., does not replace it)
= Realized as a UML profile

UMLED

=8 MARTE

MODELING
LANGUAGE

© Copyright Malina Software 2013-2011 mm

What MARTE Adds to UML

1. SUPPORT FOR CONCISE AND SEMANTICALLY
MEANINGFUL MODELING OF CPS SYSTEMS:

= A domain-specific modeling language for modeling real-time,
embedded, and cyber-physical systems

= Support for precise specifications of quality of service (QoS)
characteristics (e.g., delays, memory capacities, CPU speeds,
energy consumption)

= Can be used directly in conjunction with SysML for greater CPS
support

2. SUPPORT FOR FORMAL ENGINEERING ANALYSES OF
MODELS OF RTE/CPS:

= A generic framework for certain types of (automatable)
quantitative analyses of UML models

= Suited to computer-based automation

m 33 © Copyright Malina Software 2013-2011 pum

Example: "Bare” UML Model

T|cker

= 31

OS timer H
utlln'y

ClockApp

0. Dlsplay

«signal» tick() N

1 dlsplay(\)\\\rmg)

time? Hardware I

HW interrupt
(frequency?)

tick()

I

: Scheduling
Sl delay?
|

ow many? I ‘ Execution
:Ticker :ClockApp :Display
| | |
loop) >r7-e

display(v) R

L e
|

{(@t2 - @t1) <= 10%\[units?

Which]

© Copyright Malina Software 2013-2011 mm

Annotating a UML Model with MARTE

0..1

«swSchedulableResource»

isPreemptable=false}

{isStaticSchedulingFeature=true,

«hwDevice»
{description="DSP1455A"}

ClockApp

«timerResource»
{isPeriodic=true,
duration=(100, us)}

«signal» tick()

Display

I
I

1

1
I
I

« resourceUsage»
{execTime = 47*CPUrat|ng

disp\lay(v:String)

«resourceUsage»
{execTime = (1.5, us)}

[ﬁJB variable I

© Copyright Malina Software 2013-2011

Core Concept: Resource

* Resource: [Oxford Dictionary definition]

"A source of supply of money, materials, staff and other
assets that can be drawn upon...in order to function
effectively”

* In MARTE, a platform is viewed as a collection of
different types of resources, which can be drawn
upon by applications

* The finite nature of resources reflects the physical nature
of the underlying hardware platform(s)

Computing

Resource

Memory
Resource

etc.

© Copyright Malina Software 2013-2011 mm

1.*
Resource 4

=536

Core Concept: Resource Services

* In MARTE resources are viewed as service providers

= Consequently, applications are viewed as service clients

e.g. (platform services): N

LU Resource * memory provisioning

. * processing power
Service - bandwidth

* energy
 mutual exclusion /

Resource

+ Resource services are characterized by their

= Functionality
= Quality of service (QoS)

m 37 © Copyright Malina Software 2013-2011 mm

Core Concept: Quality of Service (QoS)

¢ Quality of Service (QoS):
* A measure of the effectiveness of service provisioning

¢+ Two complementary perspectives on QoS
= Required QoS: the demand side (what applications require)

= Offered QoS: the supply side (what platforms provide)

4 D
Many engineering analyses consist of calculating

whether (QoS) supply can meet (QoS) demand
N Y

"Virtually every calculation an engineer performs...is a failure
calculation...to provide the limits than cannot be exceeded”
-- Henry Petroski

= 38

© Copyright Malina Software 2013-2011 mm

QoS Compatibility

+ We have powerful mechanisms for verifying
functional compatibility (e.g., type theory) but
relatively little support for verifying QoS
compatibility

Required Offered
QoS QoS

sz:i stﬁ

. . reat:IDB() readDB()
Application | e NG Platform
Client Resource

Key engineering question:
(RequiredQoS < OfferedQoS) ?

= 39

© Copyright Malina Software 2013-2011 mm

Why It is Difficult to Predict Software Properties

+ Because platform resources are often shared
= ..often by independently designed applications

= Contention for resources

Required Offered
QoS QoS

sz:i stﬁ

Application
Client

Application)
Client-2 —

= 40 © Copyright Malina Software 2013-2011 mm

Quantitative QoS Values

+ Expressed as an amount of some physical measure

* Need a means for specifying physical quantities
= Value: quantity
= Dimension: kind of quantity (e.g., time, length, speed)

= Unit: measurement unit (e.g., second, meter, km/h)

¢+ However, additional optional qualifiers can also be
attached to these values:

= source: estimated/calculated/required/measured

= precision

= direction: increasing/decreasing (for QoS comparison)

= statQ: maximum/minimum/mean/percentile/distribution

m 4l

© Copyright Malina Software 2013-2011 mm

MARTE Library: Predefined Types

«enuImeration: «enuImeration: wiataType. sEnuUmeration::
SourceKind Directioni ind wrfp Ty StatisticalQualmerkKind
. NFP Common Type
et incr {esprittib = exar} M
meas decr min
calc et - WSL_ Expression mean
req source | Sourcekind FETIES=
state :StatisticalGualifieing percent
dir : Directionkind distrib
cletenn
other
| I I I
wiataType: wiataType: wdataTypes wiataType: wdataType:
«pTypes «fpTypes <apTypes «fp Types: AN pTypes
tealuesttrib = walue} sealuesttrib = walue} Tvaluesttrib = value} sealuetttrib = walue tealuesttrib = walue}
HFP_B oolean HFP_String HFP_Real HFP _Integer HFP_DateTome
value . Boolean value ;| String value : Real value : Integer value ; DateTime

wiataTypes:
AN pType:s
funit2ftrib = unit }
HFP_Duration

wilataTypes
«nfp Types
unit2ftrib = unit
HFP_DataTxate

wdataType:

«fpType:s
funit2ftrik = unit }
HFP_Frequency

wdataTypes

A pTypes
Tunit2trib = unit }

HFP_Power

wdataTypes

«nfpType:s
wunit2trik = unit }
HFP_DataSize

unit : Timelnitkind
dock @ String
precision: Real

unit : DataT =R atelUnitkind
precision : Real

unit ; Frequencydnithind
precision : Keal

unit © P ower nitkind
precision : Keal

unit : DataSizel nitkind
precision: Keal

wdataType: wiataType: wiata Types: woata Types
A pTypes < pTypes «Ifp Types «fpTypes
Tunit Attrik = wnit Tunit Attrib = unit Tunit Attrik = wnit funitAtrilb = unit }
HFP_Energy HFP_Length HFP _Weight HFP_Area
unit . Energylnitkind unit : LengthUnitk ind unit © WeightU nitkind unit © Areddnitkind
precision : Real precision : Real precision ; Keal precision ; Keal

= 12 =——eeEEEEEEEEEEEEESEEEESESSEEEEsssssssssssmmm . © Copyright Malina Software 2013-2014

MARTE Library: Measurement Units

aenumerations
adimersion»
LenghUritKind

{symbol= L}

«enumeration»
adimersions
Weight UritKind
{symbol= M}

anitn M
«unit» cm {baseUnit = m, convFactor= 1E-2}
«unite mm {baseUnit= m, convFactor= 1 E3}

«units g
«unit» mg {baseUnit = g, convFactor= 1E3}
«unit» kg {baseUnit= g, convFactor= 1E3}

«enumerations
«dimension»
FrequencyUritKind
{baseDimension = {T},
baseExponent = {-1}}

«enumerationx»
«dimension»
TimeUnitKind

{symbol = T}

«enumeration»
adimensionx»
DataSizeUnitKind

{symbol = D}

aunits Hz

aunit» KHz {baseUnit= Hz, convFactor= 1 E3}
aunit» MH {baseUnit= Hz, convFactor= 166}
aunite GHz {baseUnit= Hz, convlactor- 1E3}
aunite rpm {baseUnit= Hz, conv@actor= 0.0167}

«nits S

it tick

«unit» ms {baseUnit=s, convFactor=0.001}
«unity us {baseUnit=ms, convFactor=0.001}
«unite min {baseUnit=s, convFactor=60}
«unit» hrs {baseUnit=min, convFactor=60}
aunits dys {baseUnit=hrs, convFactor=24}

«units bit

«units» Byte (baseUnit= bit, convFactor= 8}
«unity KB {baseUnit= Byte , convFactor= 1024}
«unit» MB {baseUnit= KB, convFactor= 1024}
«unit» GB {baseUnit= MB, convFactor= 1024}

aenumeration»
adimension»
Arealnitkind
{baseDimension = {L},
baseExponent = {2}}}

«unit» mm2
aunit» um2 (baseUnit= mm2, convFactor= 1 &6}

«enumeration»
«dimension»
Power Urit Kind
{baseDimension = {L,M, T},
baseExponent= {2, 1, -3}}

«enumeration»
«dimension»
Energy Unitkind
fbaseDimension = {L,M, T},
baseExponent= {2, 1, -2}}

snite W
aunits MY fbaselnit= W, confFactor= 163}
aunite KW fbaseUnit= W, convFactor= 1E3}

anite J

aunits kJ (baseUnit= J, convFactor= 1E3}
aunitx Wh fbaseUnit= J, convFactor= 2.773E- 4}
aunits kith {baseUnit= Wh, convFactor= 1E3}
aunit» mith {baseUnit= Wh, convFactor= 1E3}

«enumerations
adimersions
DataTxRateUnit Kind
{baseDimension = {0, T},
baseExponent= {1,-1}}

ounit» b
aunits Kbfs baseUnit= bk, convFactor= 1024}
ounit» Mbs fbaseUnit= bfs, convFactor= 1024}

= 13 - © Copyright Malina Software 2013-2014

Explicit Approach: Topics Covered

= 44

Structure of Time

« time bases
 multiple time bases
* instants

* time relationships

TB1

TB2

Access to Time

* clocks

* logical clocks
 chronometric clocks
e current time

=
@ @
@
\ 4

Using Time

* timed elements

* timed events

* timed actions

* timed constraints

© Copyright Malina Software 2013-2011 mm

Example: Time Annotations

Duration expression Constraint in an
. . between two sucessive ' ' iti
Jitter constraint e e observation W|th condition
en expression
p /

Sd Dat%cq“is"i“ﬂ constraint1= { (t0[i+1] - tO[i]) > (100, ms) } %

constraint2= { (t3 when data<5.0) < t2+(30, ms) }

Extended :Controller :Sensor
duration |
intervals with start() { jitter(t0)<(5, us) }

bound « [] » — . _ &d1
specification \@te< acquire() { d1<=(1, ms) } Y

I
@t \ @
I
| [d1..30*d1] }

I
\
[
\
\
\
\
\
\
[
\
[
[
J
\
I
\
\
[
\
\
[
\

~=

ack()

{t1..t1+(8, ms)] }

_

A4

Instant Inte@ @3 sendData (data) { [(0, ms)..(10, ms)] }

Constraint

= 15 -————SS © Copyright Malina Software 2013-2011 mmm

MARTE Support for Computer-Aided Analysis

UML/MARTE MODEL

APPLICATION (ARCHITECTURE) gDEL EQUIVALENT
I o B ’jﬁ—? ANALYSIS

EN MODEL
éLLOCATlON‘(@B@EPﬁ@\gMENT) M2M Xform —] x :

\4 PLATFORM GpDEL ”4

| — | — |

N/

20
< 15
>
7]
b 10
B
B
B
P 4__‘__*//
0 * T T
0 0.2 0.4 0.6 0.8
ate

COMPUTER-BASED
_ ANALYSIS
MODELER

N

m 40 © Copyright Malina Software 2013-2011 pum

Generic Quantitative Analysis Model (GQAM)

¢ Captures the pattern common to many different kinds of
quantitative analyses (using concepts from GRM)

= Specialized for each specific analysis kind

Demand Side

N

-

N

Work demand

Supply Side

Resourcel

arrivals
(Workload <

intensity)

(e.g., event arrivals,
time triggers)

.

Work
Characterization
(Scenarios)

(e.g., disk)

(e.g., application
programs, system
programs, etc.)

m 47

ResourceN (e.g., CPV)

J

Analysis Context

© Copyright Malina Software 2013-2011 mm

Performance Analysis Example - Context

¢ An interaction (seq. diagram representation)
<<GaPerformanceContext>> {contextParams= in$Nusers, in$ThinkTime, in$lmages, in$R}

browser webserver database
<<PaRunTInstance>> <<PaRunTInstance>> <<PaRunTInstance>>
{instance = browser} {instance = webserver} {instance = database}
o i

1: getHomePage

<<GaWorkload Event>

\L

{closed (population=Nusers,
extDelay=ThinkTime)}

<<PaStep>> {hostDemand = (1,ms), opt [if customer is Iogged in]<<PaStep:E>> {prob=02}

—

respT={((1],s,percent95),req),

((R,$,percent95),calc)}

_ 2: getCustomerData
<<PaCommStep>> {msgSize=(2.9, KB)} PaSt P
<<PaStep>>

{hostDemand = (2,ms)}

I S—

w

Slide courtesy of D. Petriu, M. Woodside (Carleton U.)

= 418 -———ssssssssssssssssssESSSSSSESSSSEssssssssssssssmmm - © Copyright Malina Software 2013-2011 mm

Typical Performance Analysis Results

Utilization

»

0.2 0.4 0.6 0.8

Arrival Rate
Utilization ‘

saturation

Slide courtesy of D. Petriu, M. Woodside (Carleton U.)

Residence Time

Queue length

/

0

0.4

Residence Time

0.4
Arrival rate

0.6 f.e

I
saturation

Arrival rate 4
ueue length | ,
Q 9 aturation

© Copyright Malina Software 2013-2011

+ Software is increasingly more integrated into
everyday operations, which involves an ongoing
interaction with the physical world

¢ Our mainstream programming languages are not well
suited for this environment

* Needed: Higher-order languages that are more
directly connected to this environment

= Model-based technologies and practices

— Higher levels of abstraction and automation

¢ Still a research topic, but we already have a
number of important components of the solution

© Copyright Malina Software 2013-2011 mm

- THANK YOU-
QUESTIONS,
COMMENTS,

ARGUMENTS. ..

Supplementary Slides

= 52 ----essmmmmn - © Copyright Malina Software 2013-2011 mm

Accidental Complexity or Why It's Called "Code™

SC_MODULE (producer) SC_CTOR (consumer)

{ {

sc_outmaster<int> outl; SC_SLAVE (accumulate, inl);
sc_in<bool> start; // kick-start sum = 0; // initialize
void generate_data () };

{ SC_MODULE (top) // container
for(int i =0; i <10; i++) { {

outl =i ; //to invoke slave;} producer *Al;

} consumer *Bl;

SC_CTOR (producer) sc_link mp<int> linkl;

{ SC_CTOR (top)

SC_METHOD (generate_data) ; {

sensitive << start;}}; Al = new producer (“Al”);
SC_MODULE (consumer) Al .outl (1linkl);

{ Bl = new consumer (“Bl”);
sc_inslave<int> inl; Bl.inl (1linkl);}};

int sum; // state variable

void accumulate () { .
sum += inl; Can You see what this

cout << “Sum = “ << sum << endl;} program IS doing?

Code: a system used for brevity or secrecy [Dictionary.com]
m 53

© Copyright Malina Software 2013-2011 mm

The Corresponding UML Model

10

«Sc_method» «Sc_slavey

al:Producer b1:Consumer

out1 in1

[Ccm you see it now?]

© Copyright Malina Software 2013-2011 mm

start

m 51

Plus the Power of Computer Automation

//’SC_MODULE(producer)

{

sc_outmaster<int> outl;
sc_in<bool> start; // kick-start
void generate_data ()

{

for(int i =0; i <10; i++) {

outl =i ; //to invoke slave;}

}

SC_CTOR (producer)

{

SC_METHOD (generate_data);
sensitive << start;}};

SC_MODULE (consumer)

{

sc_inslave<int> inl;

int sum; // state variable

void accumulate () {

sum += inl;

cout << “Sum = “ << sum << endl;}

_ O\

SC_CTOR (consumer) ‘\\
{

SC_SLAVE (accumulate, inl);
sum = 0; // initialize

};

SC_MODULE (top) // container
{

producer *Al;

consumer *Bl;

sc_link mp<int> linkl;
SC_CTOR (top)

{

Al = new producer (“Al”);
Al.outl (linkl);

Bl = new consumer (“Bl”);
Bl.inl(linkl);}};

«Sc_method»
al:Producer

10

«sc_link_mp» «Sc_slave»
[ink1 | b1:Consumer

© Copyright Malina Software 2013-2011

Model-Based Engineering: The Essential Coping Approach

+ An approach to system and software development in which
computer-based software models play an indispensable role

¢+ Based on two time-proven premises:

(1) T ABsTRACTION) TAUTOMATION

Realm of
tools and
model

Realm of

modeling
languages

transforms
switch (state) ({ switch ‘statE
case‘l:actionl; case'l:aco=Timy
newState('2’); newState('2’);
break; break;
case‘2:action2; case‘2:action2;
newState (‘'3’); newState('3');
break; break;
case’3:action3; case’3:action3;
newState('1l’); newState('1l’);
break;} break; }

= 560 _-ssssss—ese————————————————————eessssssssssssssssmm © Copyright Malina Software 2013-2014

A shameless plug

Available from a web page/bookstore near you:

Publisher: Morgan Kaufmann
ISBN: 978-0-12-416619-6

m 57 © Copyright Malina Software 2013-2011 pum

The “"Software Crisis”

+ Systems of this type were designed primarily by
classical engineers (mechanical, electrical, radio,
etc.) and physicists

= Software was viewed as a simple production problem (i.e.,
writing the code) - as opposed to a research problem

s Tt is still a common attitude today among many traditional
engineering professionals

- A “"soft” science: difficult to make irrefutable assertions or
predictions

+ But, the software problems of SAGE and similar
systems exposed the difficulties of designing
reliable software

= 1968 NATO Conference on Software Engineering =
"software crisis”

m 58

© Copyright Malina Software 2013-2011 mm

Functionality vs. Engineering

Bollast tanks L Canning fower
L3

(i) Surface (i) Diving fim (iii) Svbmerged

Functionality (Logic)

/But does this
par'adlgm apply
\to software?

\

m 59

Air conditioning
Plumbing

Electrical wiring
Water recycling
Waste management
Steering

etc.

.. and its Engineering Manifestation

© Copyright Malina Software 2013-2011 mm

