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Overview

1. Find out why software engineering is important

■ see some software engineering failures

2. Get acquainted with –

■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

The Role of Foundational 
Ontologies in Deep Modeling

Colin Atkinson

MODELSWARD 2014 
Keynote Lecture
January 8th, 2014

Software Engineering Group
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Modeling Everywhere …

■ Modeling is a now key activity in virtually all IT projects

■ today is performed in may different languages

Wikipedia 2012

■ General-purpose structural languages

■ UML, OWL, ERA, RDF ...

■ General-purpose behavioural languages

■ UML activity diagrams, Petri nets, ...

■ Associated textual languages 

■ OCL, ATL, QVT, Xtext

■ Domain specific language

■ ……
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Basic Tension in Language Design 

■ Since models are used to communicate properties of the real world 
between humans they should be able to -

■ accurately and unambiguously represent the real world 
(representational adequacy  [GGO5])

■ at any desired level of detail

■ in the simplest and most concise way possible (lucidity, 
ontological clarity, construct redundancy  [GGO5])

■ There is a basic tension between expressive power and simplicity

■ rich, expressive languages often complex and verbose

■ simple, concise languages often lack expressive power

■ Related to the question

■ General-purpose versus domain specific?
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UML 1.x Four Layer Model Architecture

M1

M0

M2

M3

(from UML Semantics Version 1.1)
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Strict Metamodeling (Classic Definition)

■ every element has exactly one type, except those elements 
in the top level

■ instance-of relationship used to define levels

■ model elements allocated to levels according to their 
location in the type hierarchy

In an n-level modeling architecture, M0, M1 … Mn-1, every element 
of an Mm level model must be an instance-of exactly one element of 
an Mm+1 level model, for all m<n-1 and any relationship other than 
the instance-of relationship between two elements X and Y implies 
that level(X)=level(Y).
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UML 2.x Infrastructure

■ M0 level contains the
real-world elements
(the subject of the
model)

■ M1 level contains model
representation of types
and instances

■ M2 level contains
linguistic types of the
M1 elements

■ M3 level contains the
linguistic types of the
M2 level concepts

(from UML Infrastructure Specification v2.4.1)
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■ X is a power type of Y, if the instances of X are subclasses of Y

■ power types are classes whose instances are also 
subclasses

■ therefore, according to the strict modeling tenet, powertypes
must be at the M2 level

■ but they are represent
domain concepts

■ the isPowerTypeOf
relationship crosses 
level boundaries

■ occur very frequently 
in practice

The Powertype Problem

Product ProductType

Video Book

:ProductType

{disjoint, incomplete}

*
1

title:String

:Video

title = “2001: A space Odyssey“
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Deep Characterization

■ usually a type only describes its instances

■ e.g., every dog has an age

■ sometimes, however, a type needs to define constraints on 
the properties of the instances of its instances

■ e.g. every instance, of a breed instance, has an age

■ such transitive influences cannot be directly expressed using 
traditional instanceOf relationships

■ with UML must resort to -

■ constraints

■ powertypes

■ stereotypes

■ ….. Breed

Poodle

Fido

Dog

Breed Poodle Fido

Dog
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■ two distinct forms of classification organized in different, dimensions

■ linguistic and ontological

■ Strict (meta)-modeling in each dimension

■ So called “linguistic/ontological metamodeling paradox” [EHA13]

Orthogonal Classification Architecture

ProductType

Metaclass Class Object
classifiedBy classifiedBy

OinstanceOfOinstanceOf

LinstanceOf LinstanceOf LinstanceOf
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Deep (Multi-Level )Modeling

■ Orthogonal classification architecture

■ Unified class/object model element

■ Clabject

■ Level-agnostic mechanisms for representing “typeness” of clabjects

■ Potency (deep instantiation)

ProductType
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Different Views of the Infrastructure

Linguistic (Meta)model

FidoBreed Poodle

Dog

Tool Developer's View
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Essence of a Deep Linguistic Metamodel

Clabject

Connection Entity

DomainElement

Feature

AttributeMethod

name

potency : Natural durability: Natural
mutability : Natural

Value : String
Datatype : String

transitive : Boolean signature : String
body: String

■ abstract syntax for a Level-Agnostic Modeling language (LML)
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Classes and Objects

■ In LML classes and objects are unfied into the notion of “clabjects“

■ clabjects can have ontological attributes that play the role of UML 
attributes / slots

■ ontological attributes must always have a name

■ can also, optionally, have a type and /or a value

Clabject

linguistic Instance Oflinguistic Instance Of

ontological Instance Of

UML LML



14

Software Engineering
Prof. Dr. Colin Atkinson 14

employer

employer

Associations and Links

■ Associations / links are also  represented by a unified concept 
in LML – Connections

■ conection are also clabjects

■ can have attributes and particpate in generalizations

■ can be visualized in an exploded or “dotted“ form

Person Company

Mike: Person Apple:Company

employee

0..1

employee

0..1isEmployedBy

isEmployedBy

UMLLML
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Generalization

■ Generalizations are another first class citizen of LML

■ can also be view in an exploded or visually “insignificant“ form

■ The name of the generalization usually identifies the discriminant

■ Usual constraints such as disjoint and complete also supported

Person
employmentStatus

FemalePerson MalePerson

Employeegender

UML LML
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Stereotypes

«Clock»
AlarmClock

OSVersion = “ 1.1“
startOperation = start
POSIXCompliant = True

«Stereotype»
Clock

OSVersion : String
startOperation : Operation
POSIXCompliant :Boolean

«Metaclass»
Class

Stereotyped Element

Stereotype

UML LML

■ Stereotypes and stereotyping supported by metamodeling

«Clock»
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Powertypes

Account AccountType

CheckingAccount SavingAccount

:AccountType

{disjoint, incomplete}

account
* account classifier

1

UML LML

■ LML also provides natural support for powertypes

■ power types are metaclasses whose instances are also subclasses.
■ X is a power type of Y, if the

instances of X are subclasses of Y
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Deep Instantiation

■ a simple mechanism supporting deep characterization

■ allows feature properties to be exactly specified using the notion of

 potency 

■ provides a simple but precise definition of instanceOf relationships 
(principle of application) over multiple classification levels

■ potency takes non-negative integer values

■ an instance of a type always has a potency that is one lower
than the type

■ although instantiation also lowers the level of a clabject by one,

■ the potency and level of a clabject do not have to be the same
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The Power Type Example Revisited

LML
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■ E.g UML, Java, XML  etc.

■ Lingua Franca

■ less concise and efficient

■ facilitate inter-domain 
communication

Domain Specific v General Purpose?

BankBank

■ E.g. BPMN, Circuit Diagrams etc

■ optimized for special tasks

■ more concise and efficient 

■ “Tower of Babel“ problem

GPLs DSLs

PurchaseOrder

shipTo : String
billTo : String

Item

productName : String
quantity : int
price : float0..*

items

0..*
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DSL State-of-the-Art

■ DSLs defined in rigid, disjoint phases and environments

■ result of one phase has to be “deployed” in a major compilation step 
to enable the second phase

■ in each phase/environment only one classification level is “soft” 

■ only one concrete syntax is available in a given phase.

Define Use Apply

DSL

deploy deploy
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Package Diagrams as a DSL

UML LML

■ Many features of UML were not included in the earlier comparison of 
UML and LML

■ packages, components, composition...

■ these can be added as DSL features
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Symbiotic Languages

■ Symbiosis – a relationship in which two things compenstate for each 
other‘s weaknesses and reinforce each other‘s strengths

■ Symbiotic languages

■ coexists and can be mixed in arbitrary ways

■ Melanie supports a symbiosis between general purpose and 
domain specific visualizations

■ Key features –

■ choice between purely general purpose or domain specific 
representations of the same model

■ symbols can be arbitrarily mixed

■ any symbol can be dynamically toggled from domain-specific 
to general purpose and back

■ can be applied at multiple classification level (i.e. models) 
simultaneously



25

Software Engineering
Prof. Dr. Colin Atkinson 25

Symbiotic Language Example (1/3)
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Symbiotic Language Example (2/3)
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Symbiotic Language Example (3/3)
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Foundation Ontologies

■ a foundation ontology (also known as a top-level ontology or 
upper ontology) describes very general concepts that are 
common across all knowledge domains 

■ meet the following basic needs [EHA13]

■ promote reuse in a higher level of abstraction aimed at 
maximising the reuse of domain models 

■ produce domain specifications that are truthful to reality

■ theoretical foundations for conceptual modelling languages 

■ Examples

■ Bunge-Ward-Weber (BWW), Basic Formal Ontology (BFO), 
General Formal Ontology (GFO), Descriptive Ontology for 
Linguistic and Cognitive Engineering (DOLCE), Suggested Upper 
Merged Ontology (SUMO), 

■ Unified Foundation Ontology (UFO)  [GG05]
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■ [GG05] Guizzardi, G. Ontological Foundations for 
Structural Conceptual Models, PhD Thesis, University 
of Twente, The Netherlands. 

■ published as the book “Ontological Foundations 
for Structural Conceptual Models”, Telematica
Instituut Fundamental Research Series No. 15, 
ISBN 90-75176-81-3 ISSN 1388-1795

■ [EHG13] Owen Eriksson, Brian Henderson-Sellers, and 
Pär J. Agerfalk. 2013. Ontological and linguistic 
metamodelling revisited: A language use approach. Inf. 
Softw. Technol. 55, 12, December 2013.

■ B. Henderson-Sellers, On the Mathematics of 
Modelling, Metamodelling,Ontologies and Modelling 
Languages, SpringerBriefs in Computer Science, 
Springer-Verlag, Heidelberg, 2012. 

References



30

Software Engineering
Prof. Dr. Colin Atkinson 30

Semantics of Models

Ullmann’s Triangle

■ basis for understanding how symbols
represent concepts in a language

■ “the relation between language and 
reality is always intermediated by a 
certain conceptualization”  (Baldinger)

Guizzardi’s Square

■ characterizes relationship
between conceptualizations,
models, languages and
specializations [GG05]

Concept
(Conceptualization)

Thing
(reality)

Symbol
(language)

abstracts

refers to

represents
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Concrete Incarnation

■ In practice, boils down to a detailed taxonomy of modelling 
constructs capturing and philosophically well-founded concepts

■ Based on a traditional (two-level)  class / object dichotomy

■ Aristotle’s four category ontology

■ Most widely used and practical incarnation is OntoUML

■ a UML profile capturing the UFO taxonomy

■ supported by a tool developed by NEMO (Ontology & 
Conceptual Modeling Research Group) in Vitoria, Brazil

■ Arguments for validity and utility are philosophical

■ the necessity or correctness of modelling features can not be 
proven per se

■ often the information they convey can be modelling in another 
way (albeit perhaps less elegant)

■ phases can be modelled by attributes of enumeration types



32

Software Engineering
Prof. Dr. Colin Atkinson 32

Heart of the UFO

■ Aristotle’s four category ontology

Second chapter of 
Aristotle’ s Categories 
[GG05]
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Heart of the UFO

■ Aristotle’s four category ontology

“are in time”
• persist over 

time
• same individual

can exist at two 
times

• e.g. a house, a 
pile of bricks

“happen in time”
• extend in time accumulating 

temporal parts 
• same individual cannot exist at 

two time intervals
• e.g a race, a party

Second chapter of 
Aristotle’ s Categories 
[GG05]
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Heart of the UFO

■ Aristotle’s four category ontology

“can exist 
independently”
• objects or 

amounts of 
matter

• e.g. house, pile 
of sand

“inhere in other individuals ”
• attribute, properties, tropes
• cannot exist independent
• e.g age, reliability

Second chapter of 
Aristotle’ s Categories 
[GG05]
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Taxonomy of Substantial Universals
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Taxonomy of Substantial Universals

“have a sense of identify and type”
• support classification (principle of 

application) and identification (principle 
of identity)

• sasically correspond to classes in UML
• e.g. person, video

“dispersive universals”
• represent things with 

a particular quality
• e.g rational entity, 

strong entity
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Taxonomy of Substantial Universals

A type whose instances cannot 
cease to be instances of the type 
without  ceasing to exist
• if I is an instance of T in one 

possible world, then I must be 
an instance of T in every 
possible world

• e.g. person

A type whose instances can 
cease to be instances of the type 
whilst continuing to exist
• if I is an instance of T in a 

given world, there is another 
possible world in which I is 
not an instance of T

• e.g. student, 
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Example (OntoUML) [GG05]
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Compatability of FOs and Deep Modeling

■ At first sight FOs and deep modelling are fundamentally incompatible

■ UFO based on the fundamental universal / instance dichotomy

■ deep modelling exists to precisely to overcome this limitation

■ UFO does not explain some concepts that are important in IT

■ abstract classes

■ interfaces

■ power types

■ stereotypes?

■ but UFO can be regarded as a 
DSL in deep modelling

■ provides exactly the same 
expressive power as OntoUML
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Big Question

■ In an optimal deep modelling environment, what features in (e.g.) 
UFO be moved to the linguistic (meta)model ?

■ would the notion of rigid or antirigid clabjects be useful?

■ would it be useful to introduce the notion of role clabjects?

■ For example EHA13 argue 
that Dog is a substantial 
class while Breed is a 
moment type

■ but what if Dog were 
not in the model?

■ The top ontological model
and the linguistic model
need to be aligned and
optimized to support
deep, FO based modeling
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Deep Interpretation of Ullman’s Triangle
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■ ontological model elements are 
symbols

■ real world entities, including 
concepts, are things

■ higher level model elements are 
concepts

a concept can be an instance of 
another concept (counter to [EHA13])

Concept
(Conceptualization)

Thing
(reality)

Symbol
(language)

abstracts

refers to

represents
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Deep Interpretation of Ullman’s Triangle
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■ ontological model elements are 
symbols

■ real world entities, including 
concepts, are things

■ higher level model elements are 
concepts

a concept can be an instance of 
another concept (counter to [EHA13])

Concept
(Conceptualization)

Thing
(reality)

Symbol
(language)

abstracts

refers to

represents
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Deep Interpretation of Guizzardi’s Square
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■ model elements at one level 
are a language for the model 
specification at the level below

■ a model language represents a 
conceptualization

■ a model, a an instance of a 
conceptualization, is a model 
specification
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Deep Interpretation of Guizzardi’s Square
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■ model elements at one level 
are a language for the model 
specification at the level below

■ a model language represents a 
conceptualization

■ a model, a an instance of a 
conceptualization, is a model 
specification
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Deep Interpretation of Guizzardi’s Square
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■ model elements at one level 
are a language for the model 
specification at the level below

■ a model language represents a 
conceptualization

■ a model, an instance of a 
conceptualization, is a model 
specification
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Conclusion

■ FOs and deep modelling are at one level fundamentally 
incompatible, but at another level they are synergetic

■ an FO can be supported as a DSL in deep modelling

■ FO semantic models map well to a potency-based OCA 
(Ullmans’s triangle, Guizzardi’s square)

■ “Linguistic” and “ontological” are highly misleading labels for the 
different forms of classification 

■ infrastructural versus conceptual or domain

■ The modeling community would benefit from a fundamental 
unification of FO and deep modelling 

■ FOs needs to move beyond the two-level world view

■ Infrastructural model needs to be enhanced with FO concepts

■ Deep modelling environment from Uni. Mannheim

■ www.melanee.org
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Deep, SUM-based Environments

SUM


