
1

Software Engineering
Prof. Dr. Colin Atkinson 1

Overview

1. Find out why software engineering is important

■ see some software engineering failures

2. Get acquainted with –

■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

The Role of Foundational
Ontologies in Deep Modeling

Colin Atkinson

MODELSWARD 2014
Keynote Lecture
January 8th, 2014

Software Engineering Group

2

Software Engineering
Prof. Dr. Colin Atkinson 2

Modeling Everywhere …

■ Modeling is a now key activity in virtually all IT projects

■ today is performed in may different languages

Wikipedia 2012

■ General-purpose structural languages

■ UML, OWL, ERA, RDF ...

■ General-purpose behavioural languages

■ UML activity diagrams, Petri nets, ...

■ Associated textual languages

■ OCL, ATL, QVT, Xtext

■ Domain specific language

■ ……

3

Software Engineering
Prof. Dr. Colin Atkinson 3

Basic Tension in Language Design

■ Since models are used to communicate properties of the real world
between humans they should be able to -

■ accurately and unambiguously represent the real world
(representational adequacy [GGO5])

■ at any desired level of detail

■ in the simplest and most concise way possible (lucidity,
ontological clarity, construct redundancy [GGO5])

■ There is a basic tension between expressive power and simplicity

■ rich, expressive languages often complex and verbose

■ simple, concise languages often lack expressive power

■ Related to the question

■ General-purpose versus domain specific?

4

Software Engineering
Prof. Dr. Colin Atkinson 4

UML 1.x Four Layer Model Architecture

M1

M0

M2

M3

(from UML Semantics Version 1.1)

5

Software Engineering
Prof. Dr. Colin Atkinson 5

Strict Metamodeling (Classic Definition)

■ every element has exactly one type, except those elements
in the top level

■ instance-of relationship used to define levels

■ model elements allocated to levels according to their
location in the type hierarchy

In an n-level modeling architecture, M0, M1 … Mn-1, every element
of an Mm level model must be an instance-of exactly one element of
an Mm+1 level model, for all m<n-1 and any relationship other than
the instance-of relationship between two elements X and Y implies
that level(X)=level(Y).

6

Software Engineering
Prof. Dr. Colin Atkinson 6

UML 2.x Infrastructure

■ M0 level contains the
real-world elements
(the subject of the
model)

■ M1 level contains model
representation of types
and instances

■ M2 level contains
linguistic types of the
M1 elements

■ M3 level contains the
linguistic types of the
M2 level concepts

(from UML Infrastructure Specification v2.4.1)

7

Software Engineering
Prof. Dr. Colin Atkinson 7

■ X is a power type of Y, if the instances of X are subclasses of Y

■ power types are classes whose instances are also
subclasses

■ therefore, according to the strict modeling tenet, powertypes
must be at the M2 level

■ but they are represent
domain concepts

■ the isPowerTypeOf
relationship crosses
level boundaries

■ occur very frequently
in practice

The Powertype Problem

Product ProductType

Video Book

:ProductType

{disjoint, incomplete}

*
1

title:String

:Video

title = “2001: A space Odyssey“

8

Software Engineering
Prof. Dr. Colin Atkinson 8

Deep Characterization

■ usually a type only describes its instances

■ e.g., every dog has an age

■ sometimes, however, a type needs to define constraints on
the properties of the instances of its instances

■ e.g. every instance, of a breed instance, has an age

■ such transitive influences cannot be directly expressed using
traditional instanceOf relationships

■ with UML must resort to -

■ constraints

■ powertypes

■ stereotypes

■ ….. Breed

Poodle

Fido

Dog

Breed Poodle Fido

Dog

9

Software Engineering
Prof. Dr. Colin Atkinson 9

■ two distinct forms of classification organized in different, dimensions

■ linguistic and ontological

■ Strict (meta)-modeling in each dimension

■ So called “linguistic/ontological metamodeling paradox” [EHA13]

Orthogonal Classification Architecture

ProductType

Metaclass Class Object
classifiedBy classifiedBy

OinstanceOfOinstanceOf

LinstanceOf LinstanceOf LinstanceOf

10

Software Engineering
Prof. Dr. Colin Atkinson 10

Deep (Multi-Level)Modeling

■ Orthogonal classification architecture

■ Unified class/object model element

■ Clabject

■ Level-agnostic mechanisms for representing “typeness” of clabjects

■ Potency (deep instantiation)

ProductType

11

Software Engineering
Prof. Dr. Colin Atkinson 11

Different Views of the Infrastructure

Linguistic (Meta)model

FidoBreed Poodle

Dog

Tool Developer's View

900

L
in

g
u

istic (M
e

ta
)m

o
d

e
l

F
id

o
B

re
e
d

P
o

o
d

le

D
o

g

Modeler's View

12

Software Engineering
Prof. Dr. Colin Atkinson 12

Essence of a Deep Linguistic Metamodel

Clabject

Connection Entity

DomainElement

Feature

AttributeMethod

name

potency : Natural durability: Natural
mutability : Natural

Value : String
Datatype : String

transitive : Boolean signature : String
body: String

■ abstract syntax for a Level-Agnostic Modeling language (LML)

13

Software Engineering
Prof. Dr. Colin Atkinson 13

Classes and Objects

■ In LML classes and objects are unfied into the notion of “clabjects“

■ clabjects can have ontological attributes that play the role of UML
attributes / slots

■ ontological attributes must always have a name

■ can also, optionally, have a type and /or a value

Clabject

linguistic Instance Oflinguistic Instance Of

ontological Instance Of

UML LML

14

Software Engineering
Prof. Dr. Colin Atkinson 14

employer

employer

Associations and Links

■ Associations / links are also represented by a unified concept
in LML – Connections

■ conection are also clabjects

■ can have attributes and particpate in generalizations

■ can be visualized in an exploded or “dotted“ form

Person Company

Mike: Person Apple:Company

employee

0..1

employee

0..1isEmployedBy

isEmployedBy

UMLLML

15

Software Engineering
Prof. Dr. Colin Atkinson 15

Generalization

■ Generalizations are another first class citizen of LML

■ can also be view in an exploded or visually “insignificant“ form

■ The name of the generalization usually identifies the discriminant

■ Usual constraints such as disjoint and complete also supported

Person
employmentStatus

FemalePerson MalePerson

Employeegender

UML LML

16

Software Engineering
Prof. Dr. Colin Atkinson 16

Stereotypes

«Clock»
AlarmClock

OSVersion = “ 1.1“
startOperation = start
POSIXCompliant = True

«Stereotype»
Clock

OSVersion : String
startOperation : Operation
POSIXCompliant :Boolean

«Metaclass»
Class

Stereotyped Element

Stereotype

UML LML

■ Stereotypes and stereotyping supported by metamodeling

«Clock»

17

Software Engineering
Prof. Dr. Colin Atkinson 17

Powertypes

Account AccountType

CheckingAccount SavingAccount

:AccountType

{disjoint, incomplete}

account
* account classifier

1

UML LML

■ LML also provides natural support for powertypes

■ power types are metaclasses whose instances are also subclasses.
■ X is a power type of Y, if the

instances of X are subclasses of Y

18

Software Engineering
Prof. Dr. Colin Atkinson 18

Deep Instantiation

■ a simple mechanism supporting deep characterization

■ allows feature properties to be exactly specified using the notion of

 potency

■ provides a simple but precise definition of instanceOf relationships
(principle of application) over multiple classification levels

■ potency takes non-negative integer values

■ an instance of a type always has a potency that is one lower
than the type

■ although instantiation also lowers the level of a clabject by one,

■ the potency and level of a clabject do not have to be the same

19

Software Engineering
Prof. Dr. Colin Atkinson 19

The Power Type Example Revisited

LML

20

Software Engineering
Prof. Dr. Colin Atkinson 20

■ E.g UML, Java, XML etc.

■ Lingua Franca

■ less concise and efficient

■ facilitate inter-domain
communication

Domain Specific v General Purpose?

BankBank

■ E.g. BPMN, Circuit Diagrams etc

■ optimized for special tasks

■ more concise and efficient

■ “Tower of Babel“ problem

GPLs DSLs

PurchaseOrder

shipTo : String
billTo : String

Item

productName : String
quantity : int
price : float0..*

items

0..*

21

Software Engineering
Prof. Dr. Colin Atkinson 21

DSL State-of-the-Art

■ DSLs defined in rigid, disjoint phases and environments

■ result of one phase has to be “deployed” in a major compilation step
to enable the second phase

■ in each phase/environment only one classification level is “soft”

■ only one concrete syntax is available in a given phase.

Define Use Apply

DSL

deploy deploy

22

Software Engineering
Prof. Dr. Colin Atkinson 22

Package Diagrams as a DSL

UML LML

■ Many features of UML were not included in the earlier comparison of
UML and LML

■ packages, components, composition...

■ these can be added as DSL features

23

Software Engineering
Prof. Dr. Colin Atkinson 23

24

Software Engineering
Prof. Dr. Colin Atkinson 24

Symbiotic Languages

■ Symbiosis – a relationship in which two things compenstate for each
other‘s weaknesses and reinforce each other‘s strengths

■ Symbiotic languages

■ coexists and can be mixed in arbitrary ways

■ Melanie supports a symbiosis between general purpose and
domain specific visualizations

■ Key features –

■ choice between purely general purpose or domain specific
representations of the same model

■ symbols can be arbitrarily mixed

■ any symbol can be dynamically toggled from domain-specific
to general purpose and back

■ can be applied at multiple classification level (i.e. models)
simultaneously

25

Software Engineering
Prof. Dr. Colin Atkinson 25

Symbiotic Language Example (1/3)

26

Software Engineering
Prof. Dr. Colin Atkinson 26

Symbiotic Language Example (2/3)

27

Software Engineering
Prof. Dr. Colin Atkinson 27

Symbiotic Language Example (3/3)

28

Software Engineering
Prof. Dr. Colin Atkinson 28

Foundation Ontologies

■ a foundation ontology (also known as a top-level ontology or
upper ontology) describes very general concepts that are
common across all knowledge domains

■ meet the following basic needs [EHA13]

■ promote reuse in a higher level of abstraction aimed at
maximising the reuse of domain models

■ produce domain specifications that are truthful to reality

■ theoretical foundations for conceptual modelling languages

■ Examples

■ Bunge-Ward-Weber (BWW), Basic Formal Ontology (BFO),
General Formal Ontology (GFO), Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE), Suggested Upper
Merged Ontology (SUMO),

■ Unified Foundation Ontology (UFO) [GG05]

29

Software Engineering
Prof. Dr. Colin Atkinson 29

■ [GG05] Guizzardi, G. Ontological Foundations for
Structural Conceptual Models, PhD Thesis, University
of Twente, The Netherlands.

■ published as the book “Ontological Foundations
for Structural Conceptual Models”, Telematica
Instituut Fundamental Research Series No. 15,
ISBN 90-75176-81-3 ISSN 1388-1795

■ [EHG13] Owen Eriksson, Brian Henderson-Sellers, and
Pär J. Agerfalk. 2013. Ontological and linguistic
metamodelling revisited: A language use approach. Inf.
Softw. Technol. 55, 12, December 2013.

■ B. Henderson-Sellers, On the Mathematics of
Modelling, Metamodelling,Ontologies and Modelling
Languages, SpringerBriefs in Computer Science,
Springer-Verlag, Heidelberg, 2012.

References

30

Software Engineering
Prof. Dr. Colin Atkinson 30

Semantics of Models

Ullmann’s Triangle

■ basis for understanding how symbols
represent concepts in a language

■ “the relation between language and
reality is always intermediated by a
certain conceptualization” (Baldinger)

Guizzardi’s Square

■ characterizes relationship
between conceptualizations,
models, languages and
specializations [GG05]

Concept
(Conceptualization)

Thing
(reality)

Symbol
(language)

abstracts

refers to

represents

31

Software Engineering
Prof. Dr. Colin Atkinson 31

Concrete Incarnation

■ In practice, boils down to a detailed taxonomy of modelling
constructs capturing and philosophically well-founded concepts

■ Based on a traditional (two-level) class / object dichotomy

■ Aristotle’s four category ontology

■ Most widely used and practical incarnation is OntoUML

■ a UML profile capturing the UFO taxonomy

■ supported by a tool developed by NEMO (Ontology &
Conceptual Modeling Research Group) in Vitoria, Brazil

■ Arguments for validity and utility are philosophical

■ the necessity or correctness of modelling features can not be
proven per se

■ often the information they convey can be modelling in another
way (albeit perhaps less elegant)

■ phases can be modelled by attributes of enumeration types

32

Software Engineering
Prof. Dr. Colin Atkinson 32

Heart of the UFO

■ Aristotle’s four category ontology

Second chapter of
Aristotle’ s Categories
[GG05]

33

Software Engineering
Prof. Dr. Colin Atkinson 33

Heart of the UFO

■ Aristotle’s four category ontology

“are in time”
• persist over

time
• same individual

can exist at two
times

• e.g. a house, a
pile of bricks

“happen in time”
• extend in time accumulating

temporal parts
• same individual cannot exist at

two time intervals
• e.g a race, a party

Second chapter of
Aristotle’ s Categories
[GG05]

34

Software Engineering
Prof. Dr. Colin Atkinson 34

Heart of the UFO

■ Aristotle’s four category ontology

“can exist
independently”
• objects or

amounts of
matter

• e.g. house, pile
of sand

“inhere in other individuals ”
• attribute, properties, tropes
• cannot exist independent
• e.g age, reliability

Second chapter of
Aristotle’ s Categories
[GG05]

35

Software Engineering
Prof. Dr. Colin Atkinson 35

Taxonomy of Substantial Universals

36

Software Engineering
Prof. Dr. Colin Atkinson 36

Taxonomy of Substantial Universals

“have a sense of identify and type”
• support classification (principle of

application) and identification (principle
of identity)

• sasically correspond to classes in UML
• e.g. person, video

“dispersive universals”
• represent things with

a particular quality
• e.g rational entity,

strong entity

37

Software Engineering
Prof. Dr. Colin Atkinson 37

Taxonomy of Substantial Universals

A type whose instances cannot
cease to be instances of the type
without ceasing to exist
• if I is an instance of T in one

possible world, then I must be
an instance of T in every
possible world

• e.g. person

A type whose instances can
cease to be instances of the type
whilst continuing to exist
• if I is an instance of T in a

given world, there is another
possible world in which I is
not an instance of T

• e.g. student,

38

Software Engineering
Prof. Dr. Colin Atkinson 38

Example (OntoUML) [GG05]

39

Software Engineering
Prof. Dr. Colin Atkinson 39

Compatability of FOs and Deep Modeling

■ At first sight FOs and deep modelling are fundamentally incompatible

■ UFO based on the fundamental universal / instance dichotomy

■ deep modelling exists to precisely to overcome this limitation

■ UFO does not explain some concepts that are important in IT

■ abstract classes

■ interfaces

■ power types

■ stereotypes?

■ but UFO can be regarded as a
DSL in deep modelling

■ provides exactly the same
expressive power as OntoUML

40

Software Engineering
Prof. Dr. Colin Atkinson 40

C
la

b
je

ct

C
o
n
n
e

ctio
n

E
n
tity

D
o
m

a
in

E
le

m
e
n
t

F
e
a
tu

re

A
ttrib

u
te

M
e
th

o
d

n
a
m

e

p
o
te

n
cy : N

a
tu

ra
l

d
u
ra

b
ility: N

a
tu

ra
l

m
u
ta

b
ility : N

a
tu

ra
lV
a
lu

e
 : S

trin
g

D
a
ta

typ
e

: S
trin

g
tra

n
sitive

 : B
o
o
le

a
n

sig
n
a
tu

re
 : S

trin
g

b
o
d
y: S

trin
g

UFO as DSL

41

Software Engineering
Prof. Dr. Colin Atkinson 41

Big Question

■ In an optimal deep modelling environment, what features in (e.g.)
UFO be moved to the linguistic (meta)model ?

■ would the notion of rigid or antirigid clabjects be useful?

■ would it be useful to introduce the notion of role clabjects?

■ For example EHA13 argue
that Dog is a substantial
class while Breed is a
moment type

■ but what if Dog were
not in the model?

■ The top ontological model
and the linguistic model
need to be aligned and
optimized to support
deep, FO based modeling

42

Software Engineering
Prof. Dr. Colin Atkinson 42

Deep Interpretation of Ullman’s Triangle

L
in

g
u

istic
(M

e
ta

)m
o

d
e

lF
id

o
B

re
e
d

P
o

o
d

le

■ ontological model elements are
symbols

■ real world entities, including
concepts, are things

■ higher level model elements are
concepts

a concept can be an instance of
another concept (counter to [EHA13])

Concept
(Conceptualization)

Thing
(reality)

Symbol
(language)

abstracts

refers to

represents

43

Software Engineering
Prof. Dr. Colin Atkinson 43

Deep Interpretation of Ullman’s Triangle

L
in

g
u

istic
(M

e
ta

)m
o

d
e

lF
id

o
B

re
e
d

P
o

o
d

le

S

S

C

C

T

T

T

S

■ ontological model elements are
symbols

■ real world entities, including
concepts, are things

■ higher level model elements are
concepts

a concept can be an instance of
another concept (counter to [EHA13])

Concept
(Conceptualization)

Thing
(reality)

Symbol
(language)

abstracts

refers to

represents

44

Software Engineering
Prof. Dr. Colin Atkinson 44

Deep Interpretation of Guizzardi’s Square

L
in

g
u

istic
(M

e
ta

)m
o

d
e

l

F
id

o
B

re
e
d

P
o

o
d

le

■ model elements at one level
are a language for the model
specification at the level below

■ a model language represents a
conceptualization

■ a model, a an instance of a
conceptualization, is a model
specification

45

Software Engineering
Prof. Dr. Colin Atkinson 45

Deep Interpretation of Guizzardi’s Square

L
in

g
u

istic
(M

e
ta

)m
o

d
e

l

F
id

o
B

re
e
d

P
o

o
d

le
F

id
o

P
o

o
d

le

■ model elements at one level
are a language for the model
specification at the level below

■ a model language represents a
conceptualization

■ a model, a an instance of a
conceptualization, is a model
specification

46

Software Engineering
Prof. Dr. Colin Atkinson 46

Deep Interpretation of Guizzardi’s Square

L
in

g
u

istic
(M

e
ta

)m
o

d
e

l

F
id

o
B

re
e
d

P
o

o
d

le
B

re
e
d

P
o

o
d

le

■ model elements at one level
are a language for the model
specification at the level below

■ a model language represents a
conceptualization

■ a model, an instance of a
conceptualization, is a model
specification

47

Software Engineering
Prof. Dr. Colin Atkinson 47

Conclusion

■ FOs and deep modelling are at one level fundamentally
incompatible, but at another level they are synergetic

■ an FO can be supported as a DSL in deep modelling

■ FO semantic models map well to a potency-based OCA
(Ullmans’s triangle, Guizzardi’s square)

■ “Linguistic” and “ontological” are highly misleading labels for the
different forms of classification

■ infrastructural versus conceptual or domain

■ The modeling community would benefit from a fundamental
unification of FO and deep modelling

■ FOs needs to move beyond the two-level world view

■ Infrastructural model needs to be enhanced with FO concepts

■ Deep modelling environment from Uni. Mannheim

■ www.melanee.org

48

Software Engineering
Prof. Dr. Colin Atkinson 48

Deep, SUM-based Environments

SUM

