
MULTI PLE

Models in Software Architecture
Derivation and Evaluation:

Challenges and Opportunities

Silvia Abrahão
Department of Information Systems and Computation

Universitat Politècnica de València, Spain
sabrahao,@dsic.upv.es

MODELSWARD 2014, January 9, 2014 	

•  SEI

•  MULTIPLE Project CICYT (TIN2009-13838)

–  MULTIPLE (Multimodeling Approach for Quality-Aware Software Product Lines)

–  From 2010 to 2013

–  10 researchers at UPV (4 Professors and 6 PhD students)

–  5 external researchers:

•  University of Leicester (UK), Universidad de Colima (Mexico)

•  LERO (Ireland), IT University of Copenhagen (Denmark)

•  Universidad Rey Juan Carlos (Madrid)

–  EPO: Rolls-Royce (UK)

 Goi Eskola Politeknikoa J.M.A.

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Context

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Fundamentals

•  Software product lines (SPL) emerged as a promising approach to
improve software development processes so as to reduce costs and
enhance productivity and product quality.

3 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

“A set of software-intensive systems
sharing a common, managed set of
features that satisfy the specific needs
of a particular market segment or
mission and that are developed from a
common set of core assets in a
prescribed way”

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

SPL’s and reuse

•  A SPL is a strategic, “planned” reuse
–  Two processes: Domain Engineering & Application Engineering
–  (Base) software architecture
–  Support for commonality and variability
–  Core asset base

•  Variability management encompasses:
–  Domain modeling and management (Feature Model)
–  Variability management as supported by core assets
–  Production plan that describes how the products are produced from

the core assets

4 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Quality in SPL development

•  SPL adoption focuses mainly on managing a single view of the
system (variability view).

•  In practice, the variants are beyond the act of monotonically
adding/removing functionality to the PL architecture.

–  Interactions in the structure and behavior of a software product to
be developed can impact on its quality making the product inviable!

•  Quality is a crucial factor in SPL development.
–  A defect in the PL architecture or in the core assets may impact the

quality of many products within the SPL.

5 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Core Asset Maturity

6 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

•  Degree to which an asset is free
from further modification

•  A low maturity asset is likely to be
exposed to changes and depending
on when they manifest, this can lead
to high levels of effort to fix defects.

•  Maturity becomes a sensitive issue
for SPLs especially if products are
using low maturity assets.

•  At Rolls-Royce, 50% of effort can be
spent on scrap & rework and 50% on
the development of the assets.

Andy Nolan, Silvia Abrahão, Paul Clements, John McGregor, Sholom Cohen: Towards the
Integration of Quality Attributes into a Software Product Line Cost Model. SPLC 2011: 203-212

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Testability

7 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

[Nolan et al., 2011]

•  A non-SPL safety-critical product
invests 52% of its total development
effort on some form of V&V.

•  In a SPL at Rolls-Royce, data shows
that up to 72% of a product’s overall
effort will be spent in some form of
V&V

•  Testability can be estimated from the
#test cases (decision points)
required to exercise the core asset.

The relationship between testability and cost

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

8 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

•  The selection of a specific variation mechanism for a core asset can
have an impact on the product development & deployment cost.

•  Cost of variability in a core asset = cost of deploying the asset (in a
specific process) * cost of using the different variation mechanisms.

[Nolan et al., 2011]

Variability
Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

9 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

[Nolan et al., 2011]

Variability
Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Challenges

10

•  Quality should be evaluated at both the Domain Engineering and the
Application Engineering phases.

•  Software architecture is a means to achieve the product quality
attributes.

•  In SPL, the architecture plays a dual role:

–  The PL architecture contains a set of variation mechanisms that support
the functional and NFRs of the entire set of products that constitute the
product line.

–  The product architecture is derived from the PL architecture by
exercising its built-in architectural variation mechanisms.

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Challenges

•  When compared to the vast amount of research on developing SPLs, little
work has been dedicated to the use of SPLs to derive individual products.
–  The architecture derivation and product configuration is a complex, time-

consuming process.
–  Given a set of architectural variation points (PL architecture), how we decide

which ones should be selected or which ones should not?

 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

•  One of the most difficult tasks during product derivation is meeting
the required quality attributes.

•  Once derived, the product architecture should be evaluated to
guarantee that it meets the product specific quality attributes.

•  When the quality attributes of a product cannot be attained by using
built-in variation mechanisms, certain architectural transformations
should be applied to achieve these quality attributes.

12 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Challenges

This implies the following:
•  Quality attributes related to each architectural
transformation need to be represented and used for
selecting the transformation to be applied.
• The resulting product architecture has to be evaluated
to asses if the required quality attribute levels are
fulfilled.

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

13 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Criteria Description
C1* Non-functional requirements (NFRs) support
C2* Explicit representation of NFRs/quality attributes and their relationships with

variability or architectural components
C3** Configuration support
C4** Automated derivation support
C5*** Adaptability and extensibility (i.e., metamodel support, extension points for the

integration of domain specific generators)
C6*** Flexible and user-specific visualizations of variability (filtering, classification and

ordering support based on tasks, users, roles etc.)
C7 Explicit representation of architectural variability
C8 Architectural views support
C9 ADL/Modeling language support
C10 Configuration consistency checking
C11*** End-user guidance
C12*** Project management support (task management, roles and users support)
* C1 and C2 Adapted from the “Application requirements management support” [Rabiser et al. 2010]
** C3 and C4 Adapted from the “Automated and interactive variability resolution” [Rabiser et al. 2010]
*** C5, C6, C11 and C12 Criteria proposed at the systematic review by [Rabiser et al. 2010]

Key activities for product
derivation in SPLs

Rick Rabiser, Pádraig O’Leary, Ita Richardsonc, Key activities for product derivation in software
product lines, Journal of Systems and Software, 2010.

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

14 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
Kobra (Atkinson et al. 2000) - - - - + - - C&C Own - Partially -
Koalish (Asikainen et al. 2003) - - + + + - + C&C Own - - -
Cabello (2008) - - + + + - + + Own

(PRISMA)
+ - -

Botterweck et al. (2009) - - + + + - +
(FM /C)

C&C + +
(FM /C)

- -

Perovich et al. (2009) + - + + - - - C&C + - - -
Duran-Limon et al. (2011) - - + + - - +

(OWL and FM)
C&C + +

(FM)
- -

Guana y Correal (2013) + - + + + - + C&C + - - -
Czarnecki y Antkiewicz (2005) - - + + + - + + + +

(FM)
- -

Ziadi y Jézéquel (2006) + - + + + - On the model + UML + Partially -
PLUS-EE-
(Gomaa y Shin 2007)

- - + +
(Executable

code)

- - On the model Multiple
viewpoints

UML + - -

Perrouin et al. (2008) - - + + + - + - UML + Partially -
Schaefer et al. (2009) - - + + + - + CoBoxes CoBoxes - - -
Tawhid y Petriu (2011b) - - - + - - On the model Structure Marte - - -
Sánchez et al. (2008) - - - + + - + + + - For language

definition
-

FeatureMapper
(Heidenreich et al. 2008)

- - + + + - +
(FM and Models)

+ + + - -

Haugen et al. (2010) - - + + + - + + + + - -
Legend:
FM: Feature Model; C&C: Component and Connector; FM/C: Feature Model and Component Model; +: Supported; -: Not Supported

Existing approaches for product
(architecture) derivation

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

•  Several methods for product (architecture) derivation have been
proposed over the last few years, but:
–  They do not properly integrate quality attributes in the derivation

process.
–  The derivation process is not properly integrated with the evaluation

and quality improvement processes.
–  The derivation process is often not automated.
–  The architect knowledge is not well captured and represented.

15 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Existing approaches for product
(architecture) derivation

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

•  Several methods for architecture evaluation (specific for SPLs):
–  FAAM (SAAM and ATAM extension): does not consider interactions among

competing quality attributes, specific for interoperability and extensibility.

–  D-SAAM (SAAM extension): no interactions among quality attributes.
–  ALMA: scenario-based method specific for modifiability.

–  ATAM provides a principled way to evaluate the fitness of a software
architecture with respect to multiple competing quality attributes (not for SPL).

–  EATAM and HoPLAA (ATAM extensions): lack a systematic mechanism for
architectural improvement.

•  There is still a need for

–  Modeling the impact among architectural design decisions and quality
attributes and use this information to drive the derivation and evaluation
of high-quality product architectures.

16	 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Existing approaches for
architecture derivation

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Our approach: QuaDAI

•  An integrated method for the derivation, evaluation and improvement
of software architectures in the development of Model-Driven SPLs.

•  Based on the existence of several models (functionality, features,
quality,...) that represent the different SPL views with relationships
among them (Multimodel).

•  The views are “active” software artifacts which drives the
production plan by means of two model transformation processes:

•  Architecture derivation and product configuration
•  Architecture evaluation and improvement

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Exploit Software Product Lines Model Transformations Techniques

17	

•  A multimodel is a set of interrelated models that represents different
viewpoints of a particular system1.

•  A viewpoint is an abstraction that yields a specification of the whole
system restricted to a particular set of concerns.

•  In any given viewpoint it is possible to define a model of the system that
contains only the objects that are visible from that viewpoint. Such a model
is known as a viewpoint model, or a view of the system from that
viewpoint (NISTIR 6928, 2003) 2.

18

1The term system encompasses individual applications, systems in the
traditional sense, subsystems, systems of systems, product lines, product
families, whole enterprises, and other aggregations of interest.

2National Institute of Standards and Technology, U.S. Dept. of Commerce, USA

Multimodel

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

•  Represent the different viewpoints of a set of products that can be
derived from the SPL.

•  The multimodel comprises (at least) 4 viewpoints of the SPL and the
relationships among them:
–  Variability: expressing the commonalities and variations within the SPL.

–  Architectural: expressing the architectural variability of the PL
architecture. It can be defined using different styles (e.g., component-and-
connector, module, allocation).

–  Quality: expressing the different quality characteristics and attributes. It
can be represented by a Quality Model (ISO 25010).

–  Transformations: expressing the possible architectural transformations
(e.g., design decisions)

19

Multimodel viewpoints

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

20

Domain Engineering
•  The multimodel represents the

impacts and constraints among
variations, architectural viewpoints,
quality attributes and architectural
transformations.

Application Engineering
•  The multimodel represents the

selected and mandatory features
from the Variability Model + the
elements of the Architecture/
Functional Model + the elements of
the Quality Model and the
transformations affected by them

Multimodel Viewpoints

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

21

Quality Viewpoint

•  Represented by a Quality Model for SPLs where we can:
–  Define the impact relationships among the quality attributes
–  Define the NFRs for both the SPL and the specific products (as constraints over

the Quality Model). NFRs can be specified for specific features, core assets, etc.
–  Select the NFRs and prioritize the quality attributes for a given product (during the

configuration).

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

NFR000: System should give a response in less than 10ms
NFR001: The reliability of the system should be between
0.995 and 0.999

22

Variability Viewpoint

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

•  Represented by a Cardinality-based feature model [Czarnecki, 2005]
[Gómez et al, 2011] .

Architectural Viewpoint

23 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

…

•  Express	 the	 built-‐in	 varia5on	 mechanisms	 of	 the	 PL	 architecture	 regardless	
the	 ADL	 or	 the	 domain.	 Represented	 by	 the	 Common	 Variability	 Language.	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

–  3 variants:
•  “Normal” cruise control
•  Constant distance to a target vehicle
•  Full speed CC with image sensors

Relationships among views

•  The multimodel can be used to define relationships among the elements on
different viewpoint models or views. This will allow us to analyze
properties over the SPL as a whole.

•  These relationships are used during the different tasks that integrate the
QuaDAI derivation process.

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

24	

QuaDAI: Derivation Process
Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

FaMa Framework
http://www.isa.us.es/fama/

25	

Product Configuration

•  1. Select the features that are
required for the product.

–  Select the root feature.

–  if a child feature is selected,
then its parent feature must
be selected.

Parent feature

Child feature

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

26	

Product Configuration

•  2. Select the SPL and the product
specific NFRs that the product has
to fulfill.

•  If a product specific NFR restricts
a SPL’s NFR, both should be
selected:

–  The relationships NFR-features
are defined by using the SPL’s
NFR.

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

27	

The probability of failure of our systems usually is
below 0.00006 but in this specific case the
requirements state that the probability of failure
should be below 0.00004.

Product configuration

•  3. Prioritize quality attributes
(values ranging from 0 to 1).

–  Relative importance of quality
attributes (1 for critical 0 for trivial).

–  Leave some degrees of freedom:

a.  For quality attributes that are
impacted negatively by other
prioritized quality attributes.

b.  For quality attributes that, have
certain importance, but have no
constraints or requirements on
the product.

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

28	

Architecture Instantiation

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

29	

•  The relationships among architectural variation points, features, NFRs
and quality attributes, are used now to derive the CVL resolution model
that will allow us to obtain the first version of the architecture.

CVL Resolution Model Generation
Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	 30	

CVL Resolution Model Generation

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

31	

Architecture Materialization

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

32	

CVL resolution model

•  The product architecture evaluation is carried out by applying a quality-
driven model transformation process*

–  Architectural patterns are represented as architectural transformations
–  The application of architectural transformations generates different product

architectures that satisfies different quality attributes.

–  The domain expert should establish the impacts among architectural
transformations and quality attributes. These impacts can be determined by using
empirical evidence or the domain expert’s experience.

–  A trade-off analysis among quality attributes and architectural transformations is
performed using the Analytic Hierarchy Process (AHP).

•  The result of the AHP is a comparison matrix that shows the relative importance of
each alternative with regard to each quality attribute.

•  It is used in a quality-driven model transformation to select the appropriate architectural
transformation to be applied.

33

Architecture Evaluation

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Emilio Insfrán, Javier Gonzalez-Huerta, Silvia Abrahão: Design Guidelines for the
Development of Quality-Driven Model Transformations. MoDELS 2010: 288-302

•  The Vehicle Control System contains several subsystems (features):
–  Antilock Braking System (ABS): ensures that the maximum braking force is

transmitted to all four wheels of the vehicle.
–  Traction Control System (TCS): prevents the wheels from slipping.
–  Stability Control System (SCS): keeps the vehicle going in the direction in which the

driver is steering the car.
–  Cruise Control System (CC): attempts to maintain a constant driver determined.

Example of architecture evaluation

34 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Evaluation and Improvement

35 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Example: Quality Attributes

•  Reliability: the degree to which a system, product or component
performs specified functions under specified conditions
–  Fault tolerance: the degree to which a system operates as intended

despite the presence of hardware or software faults.

•  Performance: characterized by the amount of resources used under
stated condition for a stated period of time
–  Time-behavior: the degree to which the response and processing times

and throughput rates of a product or system meet the requirements when
performing its functions.

•  Latency time: time elapsed between firing an input event and
obtaining the response from the system.

36 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

•  The alternative architectural transformations considered here are:
–  The Homogeneous Redundancy pattern (HR)

•  Improves reliability offering two units of subsystem monitoring and performing the
same operations on the input signals.

•  The primary channel runs as long as there are no problems detected.
•  When a failure in the primary channel is detected, the system switches to the backup

channel and vice versa. There is no concurrency at run-time, only replication.
–  The Triple Modular Redundancy pattern (TMR)

•  Improves reliability and safety of a system by offering an odd number of channels
operating in parallel (reducing the performance).

•  if there is a disagreement between channels, then the results with a two out of three
majority win and are sent to the actuator.

Example: Architectural Transformations

37 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Example: Trade-Off Analysis

Domain Engineering:
•  The domain expert ranks the N architectural patterns (2) with regard to the Q

quality attributes (2) in a pairwise comparison:
a)  An AHP weight is assigned (e.g., TMR is strongly most important than HR = 5)
b)  The resulting matrix in (a) is normalized applying formula (1)
c)  The Impact is calculated applying formula (2)

38

!"#$%! !, ! = !! !, !
![!, !]!

!!!
 (1) ! ! = !"#$%![!, !]!

!!!
! (2)

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Example: Transformation Result

39

Application Engineering:
•  The Application Engineer introduces the quality attribute levels Q that the

specific product must fulfill as normalized weights ranging from 0 to 1.
•  For k quality attributes, the transformation process calculates the ranking R for

each pattern j by applying the following equation.
–  For example, introducing a weight of 1 for fault tolerance and 0 for latency will

make the transformation process to select the TMR pattern using the impact values
in the Table (c) (TMR: 1*0.83+0*0.24 > HR: 1*0.17 + 0* 0.76).

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Example: Transformation Result

40

•  According to table (c), if the quality attribute selected is fault tolerance the
transformation will select and apply the triple modular redundancy pattern

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

•  If the quality attribute selected
latency the transformation will
select and apply the homogenous
redundancy pattern.

•  The approach supports multi-
criteria quality attributes selection.

Example: Transformation Result

41 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Example: Architecture Evaluation

•  After applying the architectural transformation, we evaluate the derived
product architecture to assess if the application of the architectural
transformation pattern resulted in an improvement of the product
architecture quality.

•  We compare the measures values obtained over the product architectures
derived with and without applying the architectural pattern.

•  As an example, we use the the fault tolerance quality attribute to illustrate the
product architecture evaluation:

–  The fault tolerance attribute is measured by applying the Key Node Safety
(KNS) metric on a fault tree for the product architecture.

–  The value of the KNS metric expresses how a mutation of a system improves
its fault tolerance; the higher value of the metric is the better the fault
tolerance the system has.

42 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Example: Key Node Identification

43

Fault tree after applying
TMR Pattern

Fault tree of the
original architecture

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Example: Metric Operationalization

Original TMR
k: Number of key nodes in the fault tree 0 1

h': Total height of the fault tree +1 5 6

n: Total number of nodes in the fault tree 7 18

ci: Number of nodes in the sub-tree rooted at key node ki 0 15

d’i: Depth of the sub-tree rooted at key node ki +1 0 4

S: Key Node Safety Metric 0 0.069

44

•  The following formula calculates the
key node safety (KNS) metric:

The metric results indicates that the TMR pattern slightly improves the fault tolerance
of the product when compared to the values of the original product architecture.

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Conclusions

•  The use of MDE principles as a way to provide a richer semantic
representation of a software product line (the multimodel).

•  The approach explore MDE concepts and techniques to make
explicit the knowledge and rationale used for architectural design.
–  Capturing and representing architectural design decisions during the

architecting process is necessary for reducing architectural knowledge
evaporation

–  The multimodel is a solution for documenting design decisions and
their impact on the product quality attributes.

–  The multimodel can be used to analyze the cost/benefit of having core
assets with certain qualities (impact on quality and cost)

–  The evaluation process was found to be useful to novice software
architects (empirical validations with practitioners)

45 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Conclusions

•  Model-driven development (MDD) helps to meet time-to-market and
other business goals.

•  The multimodel provides a sufficiently formal interrelated model
that can be supported by tools capable of automating portions of
the Product Line Production Planning.

•  MDD relies on industry standards: part of the production strategy
and production methods could easily be reused across SPLs.

•  The approach improves traditional MDE practices
•  Flexible mechanism for modeling the relationships among elements

of different viewpoint models, rather than introducing this information
directly into the model transformation definitions.

46 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

47 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Thank you!
Silvia Abrahão

Universitat Politècnica de València
sabrahao@dsic.upv.es

Relationships Features-Quality
Attributes

48 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Relationships Features-NFRs

49 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

Relationships Features-
ArchVariability points (CVL)

50 MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

•  For validating the consistency of the quality viewpoint we analyze that
the prioritized quality attributes (QA) do not have negative impact
relationships among them:

–  (a): The configuration there are no prioritized QAs that have negative impacts
among them (Qb has no priority)

–  (b): The configuration includes a pair of QAs which impact negatively on the
other (Qa and Qb)

Quality Viewpoint Consistency

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Results & Benefits
Opportunities

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	 51	

Quality Viewpoint Consistency
Validation

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Results & Benefits
Opportunities

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	 52	

Variability Consistency Validation

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Results & Benefits
Opportunities

•  The variability consistency
validation checks the
conformance of the selected set of
features with the constraints and
restrictions defined in the Feature
Model:

–  We translate the Feature Model to
the FaMa Tool1 representation.

–  We inject the selected features to
the FaMa validator and obtain
whether the set of features is a
valid configuration or not.

1 FaMa Framework© ISA research group

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	

http://www.isa.us.es/fama/
53	

Variability Consistency Checking

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Results & Benefits
Opportunities

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	 54	

•  The consistency among the viewpoints should be checked to assure
that the selected features, NFRs and priorities of quality attributes meet
the constraints we have defined in the multimodel by means of the
multimodel relationships.

•  We can check two main issues:
–  That there is no feature selected which impacts negatively on a

prioritized quality attribute.
–  That all the features that realize the selected NFRs had been selected.

Inter-Viewpoint Consistency Checking

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Results & Benefits
Opportunities

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	 55	

Inter-Viewpoint Consistency Checking

Introduction
Multimodel
Architecture Derivation
Architecture Evaluation
Conclusions

MODELSWARD	 2014,	 January	 	 9,	 2014,	 Lisbon	 	 56	

